Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node
This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the \textit{k}\cdot\textit{p}...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2023-06, Vol.70 (6), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 70 |
creator | Xu, Haoqing Yao, Jiaxin Yang, Zhizhen Cao, Lei Zhang, Qingzhu Li, Yongliang Du, Anyan Yin, Huaxiang Wu, Zhenhua |
description | This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the \textit{k}\cdot\textit{p} method with a Poisson solver for the electrostatics; 3) Kubo-Greenwood model for low-field mobility calculation with surface roughness fit with experimental results; and 4) multi-subband Boltzmann transport equation (SBTE) for the high-field transfer characteristics. The study evaluates the effect of channel/wafer orientation, Ge component ratio x in SiGe-shell region, core thickness T _{\text{core}} , and surface roughness on electrostatics and transport properties. The Si/SiGe core/shell structure can be an additional performance knob for advanced technology node beyond 3 nm due to the following key physics: 1) thin SiGe-shell region with a high Ge component ratio tends to exhibit higher compressive stress in the shell region due to lattice mismatch; 2) holes are mainly confined in the SiGe-shell region under compressive strain at ON-state, leading to a significant enhancement in I _{\biosc{on}} for pMOS devices; and 3) core/shell devices exhibit lower hole density at OFF-state in the channel compared with Si-channel device, resulting in current leakage reduction. Finally, the proposed Si-core-SiGe-shell pMOS device achieves a 30.5% enhancement of I _{\biosc{on}} at T _{\text{core}}= \text{3} nm and x = 0.1, and two orders of magnitude higher ON-OFF ratio at T _{\text{core}} = 2 nm and \textit{x} = 0.1, compared to the single Si-channel pMOS device. The results suggest that the proposed core-shell structure is a potential candidate for 3-nm node |
doi_str_mv | 10.1109/TED.2023.3268156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2023_3268156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10112642</ieee_id><sourcerecordid>2819498938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-cb27c68f7af0b36304e4e7af96d098924affdfec590c2b35c336dbe9d60333513</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXho4rnYry3bI0FEEoIm4LnZ7U7ZJcsW2-XAf28JHLzM5CXvvcn8EHpmdMQY1W-b2fuIUy5GgqucZeoGDViWjYlWUt2iAaUsJ1rk4h49xLhLUknJB8h816fY2KLFiy4227qP2Du8bsjUByDrZp5GDW2L50UPZNK2ZBL8savwquh8rAF6fPiYbbDzAQvc7fEGbN351m9PeOUreER3rmgjPF33EP0k-_STLL_mi-lkSSzXvCe25GOrcjcuHC2FElSChCS0qqjONZeFc5UDm2lqeSkyK4SqStCVokKIjIkher30HoL_PULszc4fQ5dOGp4zLVNJen6I6MVlg48xgDOH0OyLcDKMmjNGkzCaM0ZzxZgiL5dIAwD_7IxxJbn4AzvlbMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819498938</pqid></control><display><type>article</type><title>Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Haoqing ; Yao, Jiaxin ; Yang, Zhizhen ; Cao, Lei ; Zhang, Qingzhu ; Li, Yongliang ; Du, Anyan ; Yin, Huaxiang ; Wu, Zhenhua</creator><creatorcontrib>Xu, Haoqing ; Yao, Jiaxin ; Yang, Zhizhen ; Cao, Lei ; Zhang, Qingzhu ; Li, Yongliang ; Du, Anyan ; Yin, Huaxiang ; Wu, Zhenhua</creatorcontrib><description><![CDATA[This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the <inline-formula> <tex-math notation="LaTeX">\textit{k}\cdot\textit{p}</tex-math> </inline-formula> method with a Poisson solver for the electrostatics; 3) Kubo-Greenwood model for low-field mobility calculation with surface roughness fit with experimental results; and 4) multi-subband Boltzmann transport equation (SBTE) for the high-field transfer characteristics. The study evaluates the effect of channel/wafer orientation, Ge component ratio x in SiGe-shell region, core thickness T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula>, and surface roughness on electrostatics and transport properties. The Si/SiGe core/shell structure can be an additional performance knob for advanced technology node beyond 3 nm due to the following key physics: 1) thin SiGe-shell region with a high Ge component ratio tends to exhibit higher compressive stress in the shell region due to lattice mismatch; 2) holes are mainly confined in the SiGe-shell region under compressive strain at ON-state, leading to a significant enhancement in I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> for pMOS devices; and 3) core/shell devices exhibit lower hole density at OFF-state in the channel compared with Si-channel device, resulting in current leakage reduction. Finally, the proposed Si-core-SiGe-shell pMOS device achieves a 30.5% enhancement of I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}= \text{3}</tex-math> </inline-formula> nm and x <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, and two orders of magnitude higher ON-OFF ratio at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 2 nm and <inline-formula> <tex-math notation="LaTeX">\textit{x}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, compared to the single Si-channel pMOS device. The results suggest that the proposed core-shell structure is a potential candidate for 3-nm node pMOS and beyond.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3268156</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boltzmann transport equation ; Compressive properties ; Core-shell structure ; Core/shell ; Current leakage ; Electrostatics ; Germanium ; Hole density ; Lattices ; Mathematical models ; nanosheet ; Nanosheets ; Nodes ; Orientation effects ; Performance evaluation ; Scattering ; Silicon ; Silicon germanides ; Stress ; Surface roughness ; TCAD simulation ; Transport properties</subject><ispartof>IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-cb27c68f7af0b36304e4e7af96d098924affdfec590c2b35c336dbe9d60333513</citedby><cites>FETCH-LOGICAL-c292t-cb27c68f7af0b36304e4e7af96d098924affdfec590c2b35c336dbe9d60333513</cites><orcidid>0000-0002-7668-4811 ; 0000-0001-8066-6002 ; 0000-0002-5590-861X ; 0000-0002-8728-0521 ; 0000-0003-4552-883X ; 0000-0003-0035-0652 ; 0000-0002-3746-404X ; 0000-0002-0755-6488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10112642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10112642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Haoqing</creatorcontrib><creatorcontrib>Yao, Jiaxin</creatorcontrib><creatorcontrib>Yang, Zhizhen</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Zhang, Qingzhu</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Du, Anyan</creatorcontrib><creatorcontrib>Yin, Huaxiang</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><title>Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the <inline-formula> <tex-math notation="LaTeX">\textit{k}\cdot\textit{p}</tex-math> </inline-formula> method with a Poisson solver for the electrostatics; 3) Kubo-Greenwood model for low-field mobility calculation with surface roughness fit with experimental results; and 4) multi-subband Boltzmann transport equation (SBTE) for the high-field transfer characteristics. The study evaluates the effect of channel/wafer orientation, Ge component ratio x in SiGe-shell region, core thickness T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula>, and surface roughness on electrostatics and transport properties. The Si/SiGe core/shell structure can be an additional performance knob for advanced technology node beyond 3 nm due to the following key physics: 1) thin SiGe-shell region with a high Ge component ratio tends to exhibit higher compressive stress in the shell region due to lattice mismatch; 2) holes are mainly confined in the SiGe-shell region under compressive strain at ON-state, leading to a significant enhancement in I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> for pMOS devices; and 3) core/shell devices exhibit lower hole density at OFF-state in the channel compared with Si-channel device, resulting in current leakage reduction. Finally, the proposed Si-core-SiGe-shell pMOS device achieves a 30.5% enhancement of I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}= \text{3}</tex-math> </inline-formula> nm and x <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, and two orders of magnitude higher ON-OFF ratio at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 2 nm and <inline-formula> <tex-math notation="LaTeX">\textit{x}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, compared to the single Si-channel pMOS device. The results suggest that the proposed core-shell structure is a potential candidate for 3-nm node pMOS and beyond.]]></description><subject>Boltzmann transport equation</subject><subject>Compressive properties</subject><subject>Core-shell structure</subject><subject>Core/shell</subject><subject>Current leakage</subject><subject>Electrostatics</subject><subject>Germanium</subject><subject>Hole density</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>nanosheet</subject><subject>Nanosheets</subject><subject>Nodes</subject><subject>Orientation effects</subject><subject>Performance evaluation</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Silicon germanides</subject><subject>Stress</subject><subject>Surface roughness</subject><subject>TCAD simulation</subject><subject>Transport properties</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXho4rnYry3bI0FEEoIm4LnZ7U7ZJcsW2-XAf28JHLzM5CXvvcn8EHpmdMQY1W-b2fuIUy5GgqucZeoGDViWjYlWUt2iAaUsJ1rk4h49xLhLUknJB8h816fY2KLFiy4227qP2Du8bsjUByDrZp5GDW2L50UPZNK2ZBL8savwquh8rAF6fPiYbbDzAQvc7fEGbN351m9PeOUreER3rmgjPF33EP0k-_STLL_mi-lkSSzXvCe25GOrcjcuHC2FElSChCS0qqjONZeFc5UDm2lqeSkyK4SqStCVokKIjIkher30HoL_PULszc4fQ5dOGp4zLVNJen6I6MVlg48xgDOH0OyLcDKMmjNGkzCaM0ZzxZgiL5dIAwD_7IxxJbn4AzvlbMk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Xu, Haoqing</creator><creator>Yao, Jiaxin</creator><creator>Yang, Zhizhen</creator><creator>Cao, Lei</creator><creator>Zhang, Qingzhu</creator><creator>Li, Yongliang</creator><creator>Du, Anyan</creator><creator>Yin, Huaxiang</creator><creator>Wu, Zhenhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7668-4811</orcidid><orcidid>https://orcid.org/0000-0001-8066-6002</orcidid><orcidid>https://orcid.org/0000-0002-5590-861X</orcidid><orcidid>https://orcid.org/0000-0002-8728-0521</orcidid><orcidid>https://orcid.org/0000-0003-4552-883X</orcidid><orcidid>https://orcid.org/0000-0003-0035-0652</orcidid><orcidid>https://orcid.org/0000-0002-3746-404X</orcidid><orcidid>https://orcid.org/0000-0002-0755-6488</orcidid></search><sort><creationdate>20230601</creationdate><title>Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node</title><author>Xu, Haoqing ; Yao, Jiaxin ; Yang, Zhizhen ; Cao, Lei ; Zhang, Qingzhu ; Li, Yongliang ; Du, Anyan ; Yin, Huaxiang ; Wu, Zhenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-cb27c68f7af0b36304e4e7af96d098924affdfec590c2b35c336dbe9d60333513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boltzmann transport equation</topic><topic>Compressive properties</topic><topic>Core-shell structure</topic><topic>Core/shell</topic><topic>Current leakage</topic><topic>Electrostatics</topic><topic>Germanium</topic><topic>Hole density</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>nanosheet</topic><topic>Nanosheets</topic><topic>Nodes</topic><topic>Orientation effects</topic><topic>Performance evaluation</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Silicon germanides</topic><topic>Stress</topic><topic>Surface roughness</topic><topic>TCAD simulation</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Haoqing</creatorcontrib><creatorcontrib>Yao, Jiaxin</creatorcontrib><creatorcontrib>Yang, Zhizhen</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Zhang, Qingzhu</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Du, Anyan</creatorcontrib><creatorcontrib>Yin, Huaxiang</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Haoqing</au><au>Yao, Jiaxin</au><au>Yang, Zhizhen</au><au>Cao, Lei</au><au>Zhang, Qingzhu</au><au>Li, Yongliang</au><au>Du, Anyan</au><au>Yin, Huaxiang</au><au>Wu, Zhenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the <inline-formula> <tex-math notation="LaTeX">\textit{k}\cdot\textit{p}</tex-math> </inline-formula> method with a Poisson solver for the electrostatics; 3) Kubo-Greenwood model for low-field mobility calculation with surface roughness fit with experimental results; and 4) multi-subband Boltzmann transport equation (SBTE) for the high-field transfer characteristics. The study evaluates the effect of channel/wafer orientation, Ge component ratio x in SiGe-shell region, core thickness T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula>, and surface roughness on electrostatics and transport properties. The Si/SiGe core/shell structure can be an additional performance knob for advanced technology node beyond 3 nm due to the following key physics: 1) thin SiGe-shell region with a high Ge component ratio tends to exhibit higher compressive stress in the shell region due to lattice mismatch; 2) holes are mainly confined in the SiGe-shell region under compressive strain at ON-state, leading to a significant enhancement in I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> for pMOS devices; and 3) core/shell devices exhibit lower hole density at OFF-state in the channel compared with Si-channel device, resulting in current leakage reduction. Finally, the proposed Si-core-SiGe-shell pMOS device achieves a 30.5% enhancement of I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}= \text{3}</tex-math> </inline-formula> nm and x <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, and two orders of magnitude higher ON-OFF ratio at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 2 nm and <inline-formula> <tex-math notation="LaTeX">\textit{x}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, compared to the single Si-channel pMOS device. The results suggest that the proposed core-shell structure is a potential candidate for 3-nm node pMOS and beyond.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3268156</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7668-4811</orcidid><orcidid>https://orcid.org/0000-0001-8066-6002</orcidid><orcidid>https://orcid.org/0000-0002-5590-861X</orcidid><orcidid>https://orcid.org/0000-0002-8728-0521</orcidid><orcidid>https://orcid.org/0000-0003-4552-883X</orcidid><orcidid>https://orcid.org/0000-0003-0035-0652</orcidid><orcidid>https://orcid.org/0000-0002-3746-404X</orcidid><orcidid>https://orcid.org/0000-0002-0755-6488</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-7 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2023_3268156 |
source | IEEE Electronic Library (IEL) |
subjects | Boltzmann transport equation Compressive properties Core-shell structure Core/shell Current leakage Electrostatics Germanium Hole density Lattices Mathematical models nanosheet Nanosheets Nodes Orientation effects Performance evaluation Scattering Silicon Silicon germanides Stress Surface roughness TCAD simulation Transport properties |
title | Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Insights%20of%20Si-Core-SiGe-Shell%20Gate-All-Around%20Nanosheet%20pFET%20for%203%20nm%20Technology%20Node&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Xu,%20Haoqing&rft.date=2023-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3268156&rft_dat=%3Cproquest_RIE%3E2819498938%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819498938&rft_id=info:pmid/&rft_ieee_id=10112642&rfr_iscdi=true |