Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node

This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the \textit{k}\cdot\textit{p}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-06, Vol.70 (6), p.1-7
Hauptverfasser: Xu, Haoqing, Yao, Jiaxin, Yang, Zhizhen, Cao, Lei, Zhang, Qingzhu, Li, Yongliang, Du, Anyan, Yin, Huaxiang, Wu, Zhenhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 6
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 70
creator Xu, Haoqing
Yao, Jiaxin
Yang, Zhizhen
Cao, Lei
Zhang, Qingzhu
Li, Yongliang
Du, Anyan
Yin, Huaxiang
Wu, Zhenhua
description This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the \textit{k}\cdot\textit{p} method with a Poisson solver for the electrostatics; 3) Kubo-Greenwood model for low-field mobility calculation with surface roughness fit with experimental results; and 4) multi-subband Boltzmann transport equation (SBTE) for the high-field transfer characteristics. The study evaluates the effect of channel/wafer orientation, Ge component ratio x in SiGe-shell region, core thickness T _{\text{core}} , and surface roughness on electrostatics and transport properties. The Si/SiGe core/shell structure can be an additional performance knob for advanced technology node beyond 3 nm due to the following key physics: 1) thin SiGe-shell region with a high Ge component ratio tends to exhibit higher compressive stress in the shell region due to lattice mismatch; 2) holes are mainly confined in the SiGe-shell region under compressive strain at ON-state, leading to a significant enhancement in I _{\biosc{on}} for pMOS devices; and 3) core/shell devices exhibit lower hole density at OFF-state in the channel compared with Si-channel device, resulting in current leakage reduction. Finally, the proposed Si-core-SiGe-shell pMOS device achieves a 30.5% enhancement of I _{\biosc{on}} at T _{\text{core}}= \text{3} nm and x = 0.1, and two orders of magnitude higher ON-OFF ratio at T _{\text{core}} = 2 nm and \textit{x} = 0.1, compared to the single Si-channel pMOS device. The results suggest that the proposed core-shell structure is a potential candidate for 3-nm node
doi_str_mv 10.1109/TED.2023.3268156
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2023_3268156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10112642</ieee_id><sourcerecordid>2819498938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-cb27c68f7af0b36304e4e7af96d098924affdfec590c2b35c336dbe9d60333513</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXho4rnYry3bI0FEEoIm4LnZ7U7ZJcsW2-XAf28JHLzM5CXvvcn8EHpmdMQY1W-b2fuIUy5GgqucZeoGDViWjYlWUt2iAaUsJ1rk4h49xLhLUknJB8h816fY2KLFiy4227qP2Du8bsjUByDrZp5GDW2L50UPZNK2ZBL8savwquh8rAF6fPiYbbDzAQvc7fEGbN351m9PeOUreER3rmgjPF33EP0k-_STLL_mi-lkSSzXvCe25GOrcjcuHC2FElSChCS0qqjONZeFc5UDm2lqeSkyK4SqStCVokKIjIkher30HoL_PULszc4fQ5dOGp4zLVNJen6I6MVlg48xgDOH0OyLcDKMmjNGkzCaM0ZzxZgiL5dIAwD_7IxxJbn4AzvlbMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819498938</pqid></control><display><type>article</type><title>Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Haoqing ; Yao, Jiaxin ; Yang, Zhizhen ; Cao, Lei ; Zhang, Qingzhu ; Li, Yongliang ; Du, Anyan ; Yin, Huaxiang ; Wu, Zhenhua</creator><creatorcontrib>Xu, Haoqing ; Yao, Jiaxin ; Yang, Zhizhen ; Cao, Lei ; Zhang, Qingzhu ; Li, Yongliang ; Du, Anyan ; Yin, Huaxiang ; Wu, Zhenhua</creatorcontrib><description><![CDATA[This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the <inline-formula> <tex-math notation="LaTeX">\textit{k}\cdot\textit{p}</tex-math> </inline-formula> method with a Poisson solver for the electrostatics; 3) Kubo-Greenwood model for low-field mobility calculation with surface roughness fit with experimental results; and 4) multi-subband Boltzmann transport equation (SBTE) for the high-field transfer characteristics. The study evaluates the effect of channel/wafer orientation, Ge component ratio x in SiGe-shell region, core thickness T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula>, and surface roughness on electrostatics and transport properties. The Si/SiGe core/shell structure can be an additional performance knob for advanced technology node beyond 3 nm due to the following key physics: 1) thin SiGe-shell region with a high Ge component ratio tends to exhibit higher compressive stress in the shell region due to lattice mismatch; 2) holes are mainly confined in the SiGe-shell region under compressive strain at ON-state, leading to a significant enhancement in I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> for pMOS devices; and 3) core/shell devices exhibit lower hole density at OFF-state in the channel compared with Si-channel device, resulting in current leakage reduction. Finally, the proposed Si-core-SiGe-shell pMOS device achieves a 30.5% enhancement of I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}= \text{3}</tex-math> </inline-formula> nm and x <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, and two orders of magnitude higher ON-OFF ratio at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 2 nm and <inline-formula> <tex-math notation="LaTeX">\textit{x}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, compared to the single Si-channel pMOS device. The results suggest that the proposed core-shell structure is a potential candidate for 3-nm node pMOS and beyond.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3268156</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boltzmann transport equation ; Compressive properties ; Core-shell structure ; Core/shell ; Current leakage ; Electrostatics ; Germanium ; Hole density ; Lattices ; Mathematical models ; nanosheet ; Nanosheets ; Nodes ; Orientation effects ; Performance evaluation ; Scattering ; Silicon ; Silicon germanides ; Stress ; Surface roughness ; TCAD simulation ; Transport properties</subject><ispartof>IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-cb27c68f7af0b36304e4e7af96d098924affdfec590c2b35c336dbe9d60333513</citedby><cites>FETCH-LOGICAL-c292t-cb27c68f7af0b36304e4e7af96d098924affdfec590c2b35c336dbe9d60333513</cites><orcidid>0000-0002-7668-4811 ; 0000-0001-8066-6002 ; 0000-0002-5590-861X ; 0000-0002-8728-0521 ; 0000-0003-4552-883X ; 0000-0003-0035-0652 ; 0000-0002-3746-404X ; 0000-0002-0755-6488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10112642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10112642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Haoqing</creatorcontrib><creatorcontrib>Yao, Jiaxin</creatorcontrib><creatorcontrib>Yang, Zhizhen</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Zhang, Qingzhu</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Du, Anyan</creatorcontrib><creatorcontrib>Yin, Huaxiang</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><title>Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the <inline-formula> <tex-math notation="LaTeX">\textit{k}\cdot\textit{p}</tex-math> </inline-formula> method with a Poisson solver for the electrostatics; 3) Kubo-Greenwood model for low-field mobility calculation with surface roughness fit with experimental results; and 4) multi-subband Boltzmann transport equation (SBTE) for the high-field transfer characteristics. The study evaluates the effect of channel/wafer orientation, Ge component ratio x in SiGe-shell region, core thickness T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula>, and surface roughness on electrostatics and transport properties. The Si/SiGe core/shell structure can be an additional performance knob for advanced technology node beyond 3 nm due to the following key physics: 1) thin SiGe-shell region with a high Ge component ratio tends to exhibit higher compressive stress in the shell region due to lattice mismatch; 2) holes are mainly confined in the SiGe-shell region under compressive strain at ON-state, leading to a significant enhancement in I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> for pMOS devices; and 3) core/shell devices exhibit lower hole density at OFF-state in the channel compared with Si-channel device, resulting in current leakage reduction. Finally, the proposed Si-core-SiGe-shell pMOS device achieves a 30.5% enhancement of I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}= \text{3}</tex-math> </inline-formula> nm and x <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, and two orders of magnitude higher ON-OFF ratio at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 2 nm and <inline-formula> <tex-math notation="LaTeX">\textit{x}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, compared to the single Si-channel pMOS device. The results suggest that the proposed core-shell structure is a potential candidate for 3-nm node pMOS and beyond.]]></description><subject>Boltzmann transport equation</subject><subject>Compressive properties</subject><subject>Core-shell structure</subject><subject>Core/shell</subject><subject>Current leakage</subject><subject>Electrostatics</subject><subject>Germanium</subject><subject>Hole density</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>nanosheet</subject><subject>Nanosheets</subject><subject>Nodes</subject><subject>Orientation effects</subject><subject>Performance evaluation</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Silicon germanides</subject><subject>Stress</subject><subject>Surface roughness</subject><subject>TCAD simulation</subject><subject>Transport properties</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXho4rnYry3bI0FEEoIm4LnZ7U7ZJcsW2-XAf28JHLzM5CXvvcn8EHpmdMQY1W-b2fuIUy5GgqucZeoGDViWjYlWUt2iAaUsJ1rk4h49xLhLUknJB8h816fY2KLFiy4227qP2Du8bsjUByDrZp5GDW2L50UPZNK2ZBL8savwquh8rAF6fPiYbbDzAQvc7fEGbN351m9PeOUreER3rmgjPF33EP0k-_STLL_mi-lkSSzXvCe25GOrcjcuHC2FElSChCS0qqjONZeFc5UDm2lqeSkyK4SqStCVokKIjIkher30HoL_PULszc4fQ5dOGp4zLVNJen6I6MVlg48xgDOH0OyLcDKMmjNGkzCaM0ZzxZgiL5dIAwD_7IxxJbn4AzvlbMk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Xu, Haoqing</creator><creator>Yao, Jiaxin</creator><creator>Yang, Zhizhen</creator><creator>Cao, Lei</creator><creator>Zhang, Qingzhu</creator><creator>Li, Yongliang</creator><creator>Du, Anyan</creator><creator>Yin, Huaxiang</creator><creator>Wu, Zhenhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7668-4811</orcidid><orcidid>https://orcid.org/0000-0001-8066-6002</orcidid><orcidid>https://orcid.org/0000-0002-5590-861X</orcidid><orcidid>https://orcid.org/0000-0002-8728-0521</orcidid><orcidid>https://orcid.org/0000-0003-4552-883X</orcidid><orcidid>https://orcid.org/0000-0003-0035-0652</orcidid><orcidid>https://orcid.org/0000-0002-3746-404X</orcidid><orcidid>https://orcid.org/0000-0002-0755-6488</orcidid></search><sort><creationdate>20230601</creationdate><title>Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node</title><author>Xu, Haoqing ; Yao, Jiaxin ; Yang, Zhizhen ; Cao, Lei ; Zhang, Qingzhu ; Li, Yongliang ; Du, Anyan ; Yin, Huaxiang ; Wu, Zhenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-cb27c68f7af0b36304e4e7af96d098924affdfec590c2b35c336dbe9d60333513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boltzmann transport equation</topic><topic>Compressive properties</topic><topic>Core-shell structure</topic><topic>Core/shell</topic><topic>Current leakage</topic><topic>Electrostatics</topic><topic>Germanium</topic><topic>Hole density</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>nanosheet</topic><topic>Nanosheets</topic><topic>Nodes</topic><topic>Orientation effects</topic><topic>Performance evaluation</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Silicon germanides</topic><topic>Stress</topic><topic>Surface roughness</topic><topic>TCAD simulation</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Haoqing</creatorcontrib><creatorcontrib>Yao, Jiaxin</creatorcontrib><creatorcontrib>Yang, Zhizhen</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Zhang, Qingzhu</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Du, Anyan</creatorcontrib><creatorcontrib>Yin, Huaxiang</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Haoqing</au><au>Yao, Jiaxin</au><au>Yang, Zhizhen</au><au>Cao, Lei</au><au>Zhang, Qingzhu</au><au>Li, Yongliang</au><au>Du, Anyan</au><au>Yin, Huaxiang</au><au>Wu, Zhenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This article presents a physics-based simulation study of a Si-core-SiGe-shell gate-all-around (GAA) nanosheet FET (NSFET). The numerical simulations employ various models including 1) an elastic model for lattice mismatch-induced stress in the core/shell structure; 2) the <inline-formula> <tex-math notation="LaTeX">\textit{k}\cdot\textit{p}</tex-math> </inline-formula> method with a Poisson solver for the electrostatics; 3) Kubo-Greenwood model for low-field mobility calculation with surface roughness fit with experimental results; and 4) multi-subband Boltzmann transport equation (SBTE) for the high-field transfer characteristics. The study evaluates the effect of channel/wafer orientation, Ge component ratio x in SiGe-shell region, core thickness T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula>, and surface roughness on electrostatics and transport properties. The Si/SiGe core/shell structure can be an additional performance knob for advanced technology node beyond 3 nm due to the following key physics: 1) thin SiGe-shell region with a high Ge component ratio tends to exhibit higher compressive stress in the shell region due to lattice mismatch; 2) holes are mainly confined in the SiGe-shell region under compressive strain at ON-state, leading to a significant enhancement in I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> for pMOS devices; and 3) core/shell devices exhibit lower hole density at OFF-state in the channel compared with Si-channel device, resulting in current leakage reduction. Finally, the proposed Si-core-SiGe-shell pMOS device achieves a 30.5% enhancement of I <inline-formula> <tex-math notation="LaTeX">_{\biosc{on}}</tex-math> </inline-formula> at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}= \text{3}</tex-math> </inline-formula> nm and x <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, and two orders of magnitude higher ON-OFF ratio at T <inline-formula> <tex-math notation="LaTeX">_{\text{core}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 2 nm and <inline-formula> <tex-math notation="LaTeX">\textit{x}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 0.1, compared to the single Si-channel pMOS device. The results suggest that the proposed core-shell structure is a potential candidate for 3-nm node pMOS and beyond.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3268156</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7668-4811</orcidid><orcidid>https://orcid.org/0000-0001-8066-6002</orcidid><orcidid>https://orcid.org/0000-0002-5590-861X</orcidid><orcidid>https://orcid.org/0000-0002-8728-0521</orcidid><orcidid>https://orcid.org/0000-0003-4552-883X</orcidid><orcidid>https://orcid.org/0000-0003-0035-0652</orcidid><orcidid>https://orcid.org/0000-0002-3746-404X</orcidid><orcidid>https://orcid.org/0000-0002-0755-6488</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-7
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2023_3268156
source IEEE Electronic Library (IEL)
subjects Boltzmann transport equation
Compressive properties
Core-shell structure
Core/shell
Current leakage
Electrostatics
Germanium
Hole density
Lattices
Mathematical models
nanosheet
Nanosheets
Nodes
Orientation effects
Performance evaluation
Scattering
Silicon
Silicon germanides
Stress
Surface roughness
TCAD simulation
Transport properties
title Physical Insights of Si-Core-SiGe-Shell Gate-All-Around Nanosheet pFET for 3 nm Technology Node
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Insights%20of%20Si-Core-SiGe-Shell%20Gate-All-Around%20Nanosheet%20pFET%20for%203%20nm%20Technology%20Node&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Xu,%20Haoqing&rft.date=2023-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3268156&rft_dat=%3Cproquest_RIE%3E2819498938%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819498938&rft_id=info:pmid/&rft_ieee_id=10112642&rfr_iscdi=true