Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes
Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2023-06, Vol.70 (6), p.1-0 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 0 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 70 |
creator | Rivera, Esteban Curras Moll, Michael |
description | Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50 \bm{\mu} m-thick LGADs from two different producers centro nacional de microelectrónica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from - 15 {^\circ} C to 40 {^\circ} C. Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure \textit{C} - \textit{V} characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models. |
doi_str_mv | 10.1109/TED.2023.3267058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2023_3267058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10114953</ieee_id><sourcerecordid>2819499002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-141dfc632191a601bbf84353c0f487816f45db23d79b55433c7275411fa548e73</originalsourceid><addsrcrecordid>eNpNkM1LAzEUxIMoWKt3Dx4Cnrfm5WOTHEurtVAQacVjSLMJTWk3dbNV6l_vlvbgaXjDzBv4IXQPZABA9NPieTyghLIBo6UkQl2gHgghC13y8hL1CAFVaKbYNbrJed2dJee0h97n7b464BTwdLuzrsXTVMdf28ZU41HyIUQXfd1mHGs8j5voOv8ztis8Sz94Yjt3-G03tnYrj8cxVT7foqtgN9nfnbWPPl6eF6PXYvY2mY6Gs8IxSdoCOFTBlYyCBlsSWC6D4kwwRwJXUkEZuKiWlFVSL4XgjDlJpeAAwQquvGR99Hj6u2vS197n1qzTvqm7SUMVaK416XD0ETmlXJNybnwwuyZubXMwQMwRnOnAmSM4cwbXVR5Olei9_xcH4Fow9ge9-mdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819499002</pqid></control><display><type>article</type><title>Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Rivera, Esteban Curras ; Moll, Michael</creator><creatorcontrib>Rivera, Esteban Curras ; Moll, Michael</creatorcontrib><description><![CDATA[Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50 <inline-formula> <tex-math notation="LaTeX">\bm{\mu}</tex-math> </inline-formula>m-thick LGADs from two different producers centro nacional de microelectrónica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C to 40 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C. Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure <inline-formula> <tex-math notation="LaTeX">\textit{C}</tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\textit{V}</tex-math> </inline-formula> characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3267058</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Avalanche breakdown ; Avalanche diodes ; CAD ; Computer aided design ; Doping profiles ; Electric fields ; electron multiplication ; Error analysis ; gain ; Gain measurement ; hole multiplication ; Impact ionization ; Infrared lasers ; Ionization coefficients ; Ions ; Laser applications ; low gain avalanche diode (LGAD) ; Mathematical models ; Optimization ; Secondary ion mass spectrometry ; Semiconductor process modeling ; Silicon devices ; Temperature measurement ; Voltage measurement</subject><ispartof>IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-0</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-141dfc632191a601bbf84353c0f487816f45db23d79b55433c7275411fa548e73</citedby><cites>FETCH-LOGICAL-c370t-141dfc632191a601bbf84353c0f487816f45db23d79b55433c7275411fa548e73</cites><orcidid>0000-0002-6555-0340 ; 0000-0001-7013-9751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10114953$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Rivera, Esteban Curras</creatorcontrib><creatorcontrib>Moll, Michael</creatorcontrib><title>Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50 <inline-formula> <tex-math notation="LaTeX">\bm{\mu}</tex-math> </inline-formula>m-thick LGADs from two different producers centro nacional de microelectrónica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C to 40 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C. Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure <inline-formula> <tex-math notation="LaTeX">\textit{C}</tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\textit{V}</tex-math> </inline-formula> characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models.]]></description><subject>Avalanche breakdown</subject><subject>Avalanche diodes</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Doping profiles</subject><subject>Electric fields</subject><subject>electron multiplication</subject><subject>Error analysis</subject><subject>gain</subject><subject>Gain measurement</subject><subject>hole multiplication</subject><subject>Impact ionization</subject><subject>Infrared lasers</subject><subject>Ionization coefficients</subject><subject>Ions</subject><subject>Laser applications</subject><subject>low gain avalanche diode (LGAD)</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Secondary ion mass spectrometry</subject><subject>Semiconductor process modeling</subject><subject>Silicon devices</subject><subject>Temperature measurement</subject><subject>Voltage measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEUxIMoWKt3Dx4Cnrfm5WOTHEurtVAQacVjSLMJTWk3dbNV6l_vlvbgaXjDzBv4IXQPZABA9NPieTyghLIBo6UkQl2gHgghC13y8hL1CAFVaKbYNbrJed2dJee0h97n7b464BTwdLuzrsXTVMdf28ZU41HyIUQXfd1mHGs8j5voOv8ztis8Sz94Yjt3-G03tnYrj8cxVT7foqtgN9nfnbWPPl6eF6PXYvY2mY6Gs8IxSdoCOFTBlYyCBlsSWC6D4kwwRwJXUkEZuKiWlFVSL4XgjDlJpeAAwQquvGR99Hj6u2vS197n1qzTvqm7SUMVaK416XD0ETmlXJNybnwwuyZubXMwQMwRnOnAmSM4cwbXVR5Olei9_xcH4Fow9ge9-mdo</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Rivera, Esteban Curras</creator><creator>Moll, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6555-0340</orcidid><orcidid>https://orcid.org/0000-0001-7013-9751</orcidid></search><sort><creationdate>20230601</creationdate><title>Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes</title><author>Rivera, Esteban Curras ; Moll, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-141dfc632191a601bbf84353c0f487816f45db23d79b55433c7275411fa548e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Avalanche breakdown</topic><topic>Avalanche diodes</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Doping profiles</topic><topic>Electric fields</topic><topic>electron multiplication</topic><topic>Error analysis</topic><topic>gain</topic><topic>Gain measurement</topic><topic>hole multiplication</topic><topic>Impact ionization</topic><topic>Infrared lasers</topic><topic>Ionization coefficients</topic><topic>Ions</topic><topic>Laser applications</topic><topic>low gain avalanche diode (LGAD)</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Secondary ion mass spectrometry</topic><topic>Semiconductor process modeling</topic><topic>Silicon devices</topic><topic>Temperature measurement</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera, Esteban Curras</creatorcontrib><creatorcontrib>Moll, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera, Esteban Curras</au><au>Moll, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>0</epage><pages>1-0</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50 <inline-formula> <tex-math notation="LaTeX">\bm{\mu}</tex-math> </inline-formula>m-thick LGADs from two different producers centro nacional de microelectrónica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C to 40 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C. Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure <inline-formula> <tex-math notation="LaTeX">\textit{C}</tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\textit{V}</tex-math> </inline-formula> characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3267058</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0002-6555-0340</orcidid><orcidid>https://orcid.org/0000-0001-7013-9751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-0 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2023_3267058 |
source | IEEE Electronic Library (IEL) |
subjects | Avalanche breakdown Avalanche diodes CAD Computer aided design Doping profiles Electric fields electron multiplication Error analysis gain Gain measurement hole multiplication Impact ionization Infrared lasers Ionization coefficients Ions Laser applications low gain avalanche diode (LGAD) Mathematical models Optimization Secondary ion mass spectrometry Semiconductor process modeling Silicon devices Temperature measurement Voltage measurement |
title | Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Impact%20Ionization%20Coefficients%20in%20Silicon%20With%20Low%20Gain%20Avalanche%20Diodes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Rivera,%20Esteban%20Curras&rft.date=2023-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=0&rft.pages=1-0&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3267058&rft_dat=%3Cproquest_cross%3E2819499002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819499002&rft_id=info:pmid/&rft_ieee_id=10114953&rfr_iscdi=true |