Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes

Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-06, Vol.70 (6), p.1-0
Hauptverfasser: Rivera, Esteban Curras, Moll, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 0
container_issue 6
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 70
creator Rivera, Esteban Curras
Moll, Michael
description Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50 \bm{\mu} m-thick LGADs from two different producers centro nacional de microelectrónica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from - 15 {^\circ} C to 40 {^\circ} C. Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure \textit{C} - \textit{V} characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models.
doi_str_mv 10.1109/TED.2023.3267058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2023_3267058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10114953</ieee_id><sourcerecordid>2819499002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-141dfc632191a601bbf84353c0f487816f45db23d79b55433c7275411fa548e73</originalsourceid><addsrcrecordid>eNpNkM1LAzEUxIMoWKt3Dx4Cnrfm5WOTHEurtVAQacVjSLMJTWk3dbNV6l_vlvbgaXjDzBv4IXQPZABA9NPieTyghLIBo6UkQl2gHgghC13y8hL1CAFVaKbYNbrJed2dJee0h97n7b464BTwdLuzrsXTVMdf28ZU41HyIUQXfd1mHGs8j5voOv8ztis8Sz94Yjt3-G03tnYrj8cxVT7foqtgN9nfnbWPPl6eF6PXYvY2mY6Gs8IxSdoCOFTBlYyCBlsSWC6D4kwwRwJXUkEZuKiWlFVSL4XgjDlJpeAAwQquvGR99Hj6u2vS197n1qzTvqm7SUMVaK416XD0ETmlXJNybnwwuyZubXMwQMwRnOnAmSM4cwbXVR5Olei9_xcH4Fow9ge9-mdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819499002</pqid></control><display><type>article</type><title>Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Rivera, Esteban Curras ; Moll, Michael</creator><creatorcontrib>Rivera, Esteban Curras ; Moll, Michael</creatorcontrib><description><![CDATA[Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50 <inline-formula> <tex-math notation="LaTeX">\bm{\mu}</tex-math> </inline-formula>m-thick LGADs from two different producers centro nacional de microelectrónica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C to 40 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C. Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure <inline-formula> <tex-math notation="LaTeX">\textit{C}</tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\textit{V}</tex-math> </inline-formula> characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3267058</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Avalanche breakdown ; Avalanche diodes ; CAD ; Computer aided design ; Doping profiles ; Electric fields ; electron multiplication ; Error analysis ; gain ; Gain measurement ; hole multiplication ; Impact ionization ; Infrared lasers ; Ionization coefficients ; Ions ; Laser applications ; low gain avalanche diode (LGAD) ; Mathematical models ; Optimization ; Secondary ion mass spectrometry ; Semiconductor process modeling ; Silicon devices ; Temperature measurement ; Voltage measurement</subject><ispartof>IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-0</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-141dfc632191a601bbf84353c0f487816f45db23d79b55433c7275411fa548e73</citedby><cites>FETCH-LOGICAL-c370t-141dfc632191a601bbf84353c0f487816f45db23d79b55433c7275411fa548e73</cites><orcidid>0000-0002-6555-0340 ; 0000-0001-7013-9751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10114953$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Rivera, Esteban Curras</creatorcontrib><creatorcontrib>Moll, Michael</creatorcontrib><title>Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50 <inline-formula> <tex-math notation="LaTeX">\bm{\mu}</tex-math> </inline-formula>m-thick LGADs from two different producers centro nacional de microelectrónica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C to 40 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C. Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure <inline-formula> <tex-math notation="LaTeX">\textit{C}</tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\textit{V}</tex-math> </inline-formula> characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models.]]></description><subject>Avalanche breakdown</subject><subject>Avalanche diodes</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Doping profiles</subject><subject>Electric fields</subject><subject>electron multiplication</subject><subject>Error analysis</subject><subject>gain</subject><subject>Gain measurement</subject><subject>hole multiplication</subject><subject>Impact ionization</subject><subject>Infrared lasers</subject><subject>Ionization coefficients</subject><subject>Ions</subject><subject>Laser applications</subject><subject>low gain avalanche diode (LGAD)</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Secondary ion mass spectrometry</subject><subject>Semiconductor process modeling</subject><subject>Silicon devices</subject><subject>Temperature measurement</subject><subject>Voltage measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEUxIMoWKt3Dx4Cnrfm5WOTHEurtVAQacVjSLMJTWk3dbNV6l_vlvbgaXjDzBv4IXQPZABA9NPieTyghLIBo6UkQl2gHgghC13y8hL1CAFVaKbYNbrJed2dJee0h97n7b464BTwdLuzrsXTVMdf28ZU41HyIUQXfd1mHGs8j5voOv8ztis8Sz94Yjt3-G03tnYrj8cxVT7foqtgN9nfnbWPPl6eF6PXYvY2mY6Gs8IxSdoCOFTBlYyCBlsSWC6D4kwwRwJXUkEZuKiWlFVSL4XgjDlJpeAAwQquvGR99Hj6u2vS197n1qzTvqm7SUMVaK416XD0ETmlXJNybnwwuyZubXMwQMwRnOnAmSM4cwbXVR5Olei9_xcH4Fow9ge9-mdo</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Rivera, Esteban Curras</creator><creator>Moll, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6555-0340</orcidid><orcidid>https://orcid.org/0000-0001-7013-9751</orcidid></search><sort><creationdate>20230601</creationdate><title>Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes</title><author>Rivera, Esteban Curras ; Moll, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-141dfc632191a601bbf84353c0f487816f45db23d79b55433c7275411fa548e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Avalanche breakdown</topic><topic>Avalanche diodes</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Doping profiles</topic><topic>Electric fields</topic><topic>electron multiplication</topic><topic>Error analysis</topic><topic>gain</topic><topic>Gain measurement</topic><topic>hole multiplication</topic><topic>Impact ionization</topic><topic>Infrared lasers</topic><topic>Ionization coefficients</topic><topic>Ions</topic><topic>Laser applications</topic><topic>low gain avalanche diode (LGAD)</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Secondary ion mass spectrometry</topic><topic>Semiconductor process modeling</topic><topic>Silicon devices</topic><topic>Temperature measurement</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera, Esteban Curras</creatorcontrib><creatorcontrib>Moll, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera, Esteban Curras</au><au>Moll, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>0</epage><pages>1-0</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Impact ionization in silicon devices has been extensively studied and several models for a quantitative description of the impact ionization coefficients have been proposed. We evaluate those models against gain measurements on low-gain avalanche diodes (LGADs) and derive new parameterizations for the impact ionization coefficients optimized to describe a large set of experimental data. We present pulsed infrared (IR)-laser-based gain measurements on five different types of 50 <inline-formula> <tex-math notation="LaTeX">\bm{\mu}</tex-math> </inline-formula>m-thick LGADs from two different producers centro nacional de microelectrónica (CNM) and Hamamatsu Photonics (HPK) performed in a temperature range from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C to 40 <inline-formula> <tex-math notation="LaTeX">{^\circ}</tex-math> </inline-formula>C. Detailed technology computer-aided design (TCAD) device models are conceived based on secondary ion mass spectrometry (SIMS) doping profile measurements and tuning of the device models to measure <inline-formula> <tex-math notation="LaTeX">\textit{C}</tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\textit{V}</tex-math> </inline-formula> characteristics. Electric field profiles are extracted from the TCAD simulations and used as input to an optimization procedure (least squares fit) of the impact ionization model parameters to the experimental data. It is demonstrated that the new parameterizations give a good agreement between all measured data and TCAD simulations which is not achieved with the existing models. Finally, we provide an error analysis and compare the obtained values for the electron and hole impact ionization coefficients against existing models.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3267058</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0002-6555-0340</orcidid><orcidid>https://orcid.org/0000-0001-7013-9751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-0
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2023_3267058
source IEEE Electronic Library (IEL)
subjects Avalanche breakdown
Avalanche diodes
CAD
Computer aided design
Doping profiles
Electric fields
electron multiplication
Error analysis
gain
Gain measurement
hole multiplication
Impact ionization
Infrared lasers
Ionization coefficients
Ions
Laser applications
low gain avalanche diode (LGAD)
Mathematical models
Optimization
Secondary ion mass spectrometry
Semiconductor process modeling
Silicon devices
Temperature measurement
Voltage measurement
title Study of Impact Ionization Coefficients in Silicon With Low Gain Avalanche Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Impact%20Ionization%20Coefficients%20in%20Silicon%20With%20Low%20Gain%20Avalanche%20Diodes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Rivera,%20Esteban%20Curras&rft.date=2023-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=0&rft.pages=1-0&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3267058&rft_dat=%3Cproquest_cross%3E2819499002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819499002&rft_id=info:pmid/&rft_ieee_id=10114953&rfr_iscdi=true