Determining the Zero-Temperature-Coefficient Point From Device Simulation to Circuit for Improving Temperature Variation Immunity

Thermal issue emerges as one of the critical reliability concerns in integrated circuit design, especially for advanced technology. To improve the temperature immunity and reduce the thermal-related timing guard bands in digital circuits, in this work, we offer a new insight into the zero-temperatur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-03, Vol.70 (3), p.1-7
Hauptverfasser: Chen, Wangyong, Zheng, Mingyue, Lyu, Yaoyang, Cai, Linlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 3
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 70
creator Chen, Wangyong
Zheng, Mingyue
Lyu, Yaoyang
Cai, Linlin
description Thermal issue emerges as one of the critical reliability concerns in integrated circuit design, especially for advanced technology. To improve the temperature immunity and reduce the thermal-related timing guard bands in digital circuits, in this work, we offer a new insight into the zero-temperature-coefficient (ZTC) based design strategy featuring minimizing the temperature-induced delay variation. An effective current-based method to facilitate the ZTC point ( \textit{V}_{\text{ZTC}} ) determination for standard cells is developed, which is demonstrated on advanced gate-all-around (GAA) nanosheet (NS) FETs from 300 to 425 K using the calibrated TCAD simulation. The \textit{V}_{\text{ZTC}} dependencies on the signal input slew rate, output capacitance, and self-heating effects (SHEs) are further investigated from the perspective of the effective current by tracing the voltage trajectory. The mixed-mode TCAD simulation results show that the frequency variation of ring oscillator (RO) reduces nearly ten times when operating near \textit{V}_{\text{ZTC}} and great power-performance trade-offs can also be achieved. The \textit{V}_{\text{ZTC}} determination for standard cells combined with the compensation effect among different standard cells benefits selecting the optimal zero-temperature-delay (ZTD) point in the target path, thereby helping to implement a robust digital design against temperature variation.
doi_str_mv 10.1109/TED.2023.3234897
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2023_3234897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10013091</ieee_id><sourcerecordid>2779659997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-7baa27516c07bb83f2738d275411ee9e891084306d1b77e64ce768631c98ac5f3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsFbvHjwseE7dj2Q_jpK2WigoWD14Ccl2oluabN1sCj36n7slHnqZYYb33gw_hG4pmVBK9MNqNp0wwviEM54qLc_QiGaZTLRIxTkaEUJVornil-iq6zZxFGnKRuh3CgF8Y1vbfuHwDfgTvEtW0OzAl6H3kOQO6toaC23Ar87GOveuwVPYWwP4zTb9tgzWtTg4nFtvehtw7TxeNDvv9sfYkzT8UXo7yBdN07c2HK7RRV1uO7j572P0Pp-t8udk-fK0yB-XiWGMhURWZclkRoUhsqoUr5nkah03KaUAGpSmRKWciDWtpASRGpBCCU6NVqXJaj5G90NufOunhy4UG9f7Np4smJRaZFprGVVkUBnvus5DXey8bUp_KCgpjqCLCLo4gi7-QUfL3WCxAHAiJ5QTTfkf1hp7Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779659997</pqid></control><display><type>article</type><title>Determining the Zero-Temperature-Coefficient Point From Device Simulation to Circuit for Improving Temperature Variation Immunity</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Wangyong ; Zheng, Mingyue ; Lyu, Yaoyang ; Cai, Linlin</creator><creatorcontrib>Chen, Wangyong ; Zheng, Mingyue ; Lyu, Yaoyang ; Cai, Linlin</creatorcontrib><description><![CDATA[Thermal issue emerges as one of the critical reliability concerns in integrated circuit design, especially for advanced technology. To improve the temperature immunity and reduce the thermal-related timing guard bands in digital circuits, in this work, we offer a new insight into the zero-temperature-coefficient (ZTC) based design strategy featuring minimizing the temperature-induced delay variation. An effective current-based method to facilitate the ZTC point (<inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula>) determination for standard cells is developed, which is demonstrated on advanced gate-all-around (GAA) nanosheet (NS) FETs from 300 to 425 K using the calibrated TCAD simulation. The <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> dependencies on the signal input slew rate, output capacitance, and self-heating effects (SHEs) are further investigated from the perspective of the effective current by tracing the voltage trajectory. The mixed-mode TCAD simulation results show that the frequency variation of ring oscillator (RO) reduces nearly ten times when operating near <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> and great power-performance trade-offs can also be achieved. The <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> determination for standard cells combined with the compensation effect among different standard cells benefits selecting the optimal zero-temperature-delay (ZTD) point in the target path, thereby helping to implement a robust digital design against temperature variation.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3234897</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Circuit reliability ; Coefficient of variation ; Delays ; Digital circuits ; Digital electronics ; Effective current ; Frequency variation ; Gallium arsenide ; High temperature effects ; Immunity ; Integrated circuit modeling ; Integrated circuits ; nanosheet (NS) ; self-heating ; Simulation ; Slew rate ; temperature immunity ; Trajectory ; Voltage ; zero-temperature delay (ZTD)</subject><ispartof>IEEE transactions on electron devices, 2023-03, Vol.70 (3), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-7baa27516c07bb83f2738d275411ee9e891084306d1b77e64ce768631c98ac5f3</citedby><cites>FETCH-LOGICAL-c222t-7baa27516c07bb83f2738d275411ee9e891084306d1b77e64ce768631c98ac5f3</cites><orcidid>0000-0003-0294-4366 ; 0000-0001-5545-2168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10013091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10013091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Wangyong</creatorcontrib><creatorcontrib>Zheng, Mingyue</creatorcontrib><creatorcontrib>Lyu, Yaoyang</creatorcontrib><creatorcontrib>Cai, Linlin</creatorcontrib><title>Determining the Zero-Temperature-Coefficient Point From Device Simulation to Circuit for Improving Temperature Variation Immunity</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Thermal issue emerges as one of the critical reliability concerns in integrated circuit design, especially for advanced technology. To improve the temperature immunity and reduce the thermal-related timing guard bands in digital circuits, in this work, we offer a new insight into the zero-temperature-coefficient (ZTC) based design strategy featuring minimizing the temperature-induced delay variation. An effective current-based method to facilitate the ZTC point (<inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula>) determination for standard cells is developed, which is demonstrated on advanced gate-all-around (GAA) nanosheet (NS) FETs from 300 to 425 K using the calibrated TCAD simulation. The <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> dependencies on the signal input slew rate, output capacitance, and self-heating effects (SHEs) are further investigated from the perspective of the effective current by tracing the voltage trajectory. The mixed-mode TCAD simulation results show that the frequency variation of ring oscillator (RO) reduces nearly ten times when operating near <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> and great power-performance trade-offs can also be achieved. The <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> determination for standard cells combined with the compensation effect among different standard cells benefits selecting the optimal zero-temperature-delay (ZTD) point in the target path, thereby helping to implement a robust digital design against temperature variation.]]></description><subject>Circuit design</subject><subject>Circuit reliability</subject><subject>Coefficient of variation</subject><subject>Delays</subject><subject>Digital circuits</subject><subject>Digital electronics</subject><subject>Effective current</subject><subject>Frequency variation</subject><subject>Gallium arsenide</subject><subject>High temperature effects</subject><subject>Immunity</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>nanosheet (NS)</subject><subject>self-heating</subject><subject>Simulation</subject><subject>Slew rate</subject><subject>temperature immunity</subject><subject>Trajectory</subject><subject>Voltage</subject><subject>zero-temperature delay (ZTD)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsFbvHjwseE7dj2Q_jpK2WigoWD14Ccl2oluabN1sCj36n7slHnqZYYb33gw_hG4pmVBK9MNqNp0wwviEM54qLc_QiGaZTLRIxTkaEUJVornil-iq6zZxFGnKRuh3CgF8Y1vbfuHwDfgTvEtW0OzAl6H3kOQO6toaC23Ar87GOveuwVPYWwP4zTb9tgzWtTg4nFtvehtw7TxeNDvv9sfYkzT8UXo7yBdN07c2HK7RRV1uO7j572P0Pp-t8udk-fK0yB-XiWGMhURWZclkRoUhsqoUr5nkah03KaUAGpSmRKWciDWtpASRGpBCCU6NVqXJaj5G90NufOunhy4UG9f7Np4smJRaZFprGVVkUBnvus5DXey8bUp_KCgpjqCLCLo4gi7-QUfL3WCxAHAiJ5QTTfkf1hp7Ug</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Chen, Wangyong</creator><creator>Zheng, Mingyue</creator><creator>Lyu, Yaoyang</creator><creator>Cai, Linlin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0294-4366</orcidid><orcidid>https://orcid.org/0000-0001-5545-2168</orcidid></search><sort><creationdate>20230301</creationdate><title>Determining the Zero-Temperature-Coefficient Point From Device Simulation to Circuit for Improving Temperature Variation Immunity</title><author>Chen, Wangyong ; Zheng, Mingyue ; Lyu, Yaoyang ; Cai, Linlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-7baa27516c07bb83f2738d275411ee9e891084306d1b77e64ce768631c98ac5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit design</topic><topic>Circuit reliability</topic><topic>Coefficient of variation</topic><topic>Delays</topic><topic>Digital circuits</topic><topic>Digital electronics</topic><topic>Effective current</topic><topic>Frequency variation</topic><topic>Gallium arsenide</topic><topic>High temperature effects</topic><topic>Immunity</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>nanosheet (NS)</topic><topic>self-heating</topic><topic>Simulation</topic><topic>Slew rate</topic><topic>temperature immunity</topic><topic>Trajectory</topic><topic>Voltage</topic><topic>zero-temperature delay (ZTD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wangyong</creatorcontrib><creatorcontrib>Zheng, Mingyue</creatorcontrib><creatorcontrib>Lyu, Yaoyang</creatorcontrib><creatorcontrib>Cai, Linlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Wangyong</au><au>Zheng, Mingyue</au><au>Lyu, Yaoyang</au><au>Cai, Linlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the Zero-Temperature-Coefficient Point From Device Simulation to Circuit for Improving Temperature Variation Immunity</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>70</volume><issue>3</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Thermal issue emerges as one of the critical reliability concerns in integrated circuit design, especially for advanced technology. To improve the temperature immunity and reduce the thermal-related timing guard bands in digital circuits, in this work, we offer a new insight into the zero-temperature-coefficient (ZTC) based design strategy featuring minimizing the temperature-induced delay variation. An effective current-based method to facilitate the ZTC point (<inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula>) determination for standard cells is developed, which is demonstrated on advanced gate-all-around (GAA) nanosheet (NS) FETs from 300 to 425 K using the calibrated TCAD simulation. The <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> dependencies on the signal input slew rate, output capacitance, and self-heating effects (SHEs) are further investigated from the perspective of the effective current by tracing the voltage trajectory. The mixed-mode TCAD simulation results show that the frequency variation of ring oscillator (RO) reduces nearly ten times when operating near <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> and great power-performance trade-offs can also be achieved. The <inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{ZTC}}</tex-math> </inline-formula> determination for standard cells combined with the compensation effect among different standard cells benefits selecting the optimal zero-temperature-delay (ZTD) point in the target path, thereby helping to implement a robust digital design against temperature variation.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3234897</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0294-4366</orcidid><orcidid>https://orcid.org/0000-0001-5545-2168</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-03, Vol.70 (3), p.1-7
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2023_3234897
source IEEE Electronic Library (IEL)
subjects Circuit design
Circuit reliability
Coefficient of variation
Delays
Digital circuits
Digital electronics
Effective current
Frequency variation
Gallium arsenide
High temperature effects
Immunity
Integrated circuit modeling
Integrated circuits
nanosheet (NS)
self-heating
Simulation
Slew rate
temperature immunity
Trajectory
Voltage
zero-temperature delay (ZTD)
title Determining the Zero-Temperature-Coefficient Point From Device Simulation to Circuit for Improving Temperature Variation Immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20Zero-Temperature-Coefficient%20Point%20From%20Device%20Simulation%20to%20Circuit%20for%20Improving%20Temperature%20Variation%20Immunity&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chen,%20Wangyong&rft.date=2023-03-01&rft.volume=70&rft.issue=3&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3234897&rft_dat=%3Cproquest_RIE%3E2779659997%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779659997&rft_id=info:pmid/&rft_ieee_id=10013091&rfr_iscdi=true