Electrical Characteristics of Ultrathin InZnO Thin-Film Transistors Prepared by Atomic Layer Deposition

In this article, enhancement-mode thin-film transistors (TFTs) with atomic layer deposition (ALD)-derived ultrathin ( \approx 3 nm) amorphous indium-zinc oxide (a-IZO) channel were demonstrated. Our devices showed improved device characteristics as benchmarked with thicker IZO thin-film channels. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-03, Vol.70 (3), p.1-6
Hauptverfasser: Liang, Yan-Kui, Lin, Jing-Wei, Peng, Li-Chi, Hua, Yi Miao, Chou, Tsung-Te, Kei, Chi-Chung, Lu, Chun-Chieh, Huang, Huai-Ying, Yeong, Sai Hooi, Lin, Yu-Ming, Liu, Po-Tsun, Chang, Edward-Yi, Lin, Chun-Hsiung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 3
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 70
creator Liang, Yan-Kui
Lin, Jing-Wei
Peng, Li-Chi
Hua, Yi Miao
Chou, Tsung-Te
Kei, Chi-Chung
Lu, Chun-Chieh
Huang, Huai-Ying
Yeong, Sai Hooi
Lin, Yu-Ming
Liu, Po-Tsun
Chang, Edward-Yi
Lin, Chun-Hsiung
description In this article, enhancement-mode thin-film transistors (TFTs) with atomic layer deposition (ALD)-derived ultrathin ( \approx 3 nm) amorphous indium-zinc oxide (a-IZO) channel were demonstrated. Our devices showed improved device characteristics as benchmarked with thicker IZO thin-film channels. The ALD-deposited IZO channel TFT with an In/Zn ratio of \approx 6:4 exhibited a high field-effect channel mobility ( \mu_{\text{FE}}\text{)} of 53.6 cm ^{\text{2}} /V-s, a threshold voltage ( \textit{V}_{\text{th}}\text{)} of 0.28 V, a low subthreshold gate swing of 74 mV/decade, an I_{\biosc{on}}/I_{\biosc{off}} ratio of > 10 ^{\text{9}} , and a contact resistance of 0.18 k \Omega - \mu m after 300 {^{\circ}} C anneal in oxygen atmosphere. Physical analysis, including X-ray and ultraviolet (UV) photoelectron spectra of IZO films, was conducted to understand the mechanisms of enhancement in electrical performance after annealing. The threshold voltages of the TFT also exhibited high stability ( \Delta\textit{V}_{\text{th, PBS}}
doi_str_mv 10.1109/TED.2022.3232476
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2022_3232476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004843</ieee_id><sourcerecordid>2779658415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-9113beb1359e956ebd9ef0ecc89b712316b901cfc8784eac60cbc76ace61bf9c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xV5x4rPoBlSqVIV1YLMe9UFdpHGwz9N-Tqh2Y7j3pee-kB6FnSiaUEvVWLeYTRhibcMaZKOQNGtE8LzIlhbxFI0JomSle8nv0EONhWKUQbIS-Fy3YFJw1LZ7tTTA2QXAxORuxb_C2TcGkvevwqvvqNrgaYrZ07RFXwXRxAH2I-DNAbwLscH3C0-SPzuK1OUHAc-h9dMn57hHdNaaN8HSdY7RdLqrZR7bevK9m03VmmWIpU5TyGmrKcwUql1DvFDQErC1VXVDGqawVobaxZVEKMFYSW9tCGguS1o2yfIxeL3f74H9-ISZ98L-hG15qVhRK5qWg-UCRC2WDjzFAo_vgjiacNCX6rFMPOvVZp77qHCovl4oDgH84IaIUnP8B1nFycg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779658415</pqid></control><display><type>article</type><title>Electrical Characteristics of Ultrathin InZnO Thin-Film Transistors Prepared by Atomic Layer Deposition</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Yan-Kui ; Lin, Jing-Wei ; Peng, Li-Chi ; Hua, Yi Miao ; Chou, Tsung-Te ; Kei, Chi-Chung ; Lu, Chun-Chieh ; Huang, Huai-Ying ; Yeong, Sai Hooi ; Lin, Yu-Ming ; Liu, Po-Tsun ; Chang, Edward-Yi ; Lin, Chun-Hsiung</creator><creatorcontrib>Liang, Yan-Kui ; Lin, Jing-Wei ; Peng, Li-Chi ; Hua, Yi Miao ; Chou, Tsung-Te ; Kei, Chi-Chung ; Lu, Chun-Chieh ; Huang, Huai-Ying ; Yeong, Sai Hooi ; Lin, Yu-Ming ; Liu, Po-Tsun ; Chang, Edward-Yi ; Lin, Chun-Hsiung</creatorcontrib><description><![CDATA[In this article, enhancement-mode thin-film transistors (TFTs) with atomic layer deposition (ALD)-derived ultrathin (<inline-formula> <tex-math notation="LaTeX">\approx</tex-math> </inline-formula>3 nm) amorphous indium-zinc oxide (a-IZO) channel were demonstrated. Our devices showed improved device characteristics as benchmarked with thicker IZO thin-film channels. The ALD-deposited IZO channel TFT with an In/Zn ratio of <inline-formula> <tex-math notation="LaTeX">\approx</tex-math> </inline-formula>6:4 exhibited a high field-effect channel mobility (<inline-formula> <tex-math notation="LaTeX">\mu_{\text{FE}}\text{)}</tex-math> </inline-formula> of 53.6 cm<inline-formula> <tex-math notation="LaTeX">^{\text{2}}</tex-math> </inline-formula>/V-s, a threshold voltage (<inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{th}}\text{)}</tex-math> </inline-formula> of 0.28 V, a low subthreshold gate swing of 74 mV/decade, an <inline-formula> <tex-math notation="LaTeX">I_{\biosc{on}}/I_{\biosc{off}}</tex-math> </inline-formula> ratio of <inline-formula> <tex-math notation="LaTeX">></tex-math> </inline-formula>10<inline-formula> <tex-math notation="LaTeX">^{\text{9}}</tex-math> </inline-formula>, and a contact resistance of 0.18 k<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>m after 300 <inline-formula> <tex-math notation="LaTeX">{^{\circ}}</tex-math> </inline-formula>C anneal in oxygen atmosphere. Physical analysis, including X-ray and ultraviolet (UV) photoelectron spectra of IZO films, was conducted to understand the mechanisms of enhancement in electrical performance after annealing. The threshold voltages of the TFT also exhibited high stability (<inline-formula> <tex-math notation="LaTeX">\Delta\textit{V}_{\text{th, PBS}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula> 16 mV and <inline-formula> <tex-math notation="LaTeX">\Delta\textit{V}_{\text{th, NBS}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula> 12 mV) after positive bias stress (PBS) and negative bias stress (NBS) test for 3600 s. To the best of our knowledge, we reported the TFT with thinnest IZO ternary oxide semiconductor (OS) channel exhibiting superior channel mobility and subthreshold characteristics.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3232476</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; Atomic layer deposition (ALD) ; Atomic layer epitaxy ; Bias ; Contact resistance ; Electric contacts ; high mobility ; II-VI semiconductor materials ; indium–zinc oxide (IZO) ; InZnO thin-film transistors (TFTs) ; Iron ; Logic gates ; oxygen annealing ; Photoelectrons ; reliability ; Semiconductor devices ; TFTs ; Thin film transistors ; Threshold voltage ; Ultraviolet spectra ; Uninterruptible power systems ; Zinc oxide</subject><ispartof>IEEE transactions on electron devices, 2023-03, Vol.70 (3), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-9113beb1359e956ebd9ef0ecc89b712316b901cfc8784eac60cbc76ace61bf9c3</citedby><cites>FETCH-LOGICAL-c292t-9113beb1359e956ebd9ef0ecc89b712316b901cfc8784eac60cbc76ace61bf9c3</cites><orcidid>0000-0003-1616-5240 ; 0000-0003-1664-0312 ; 0000-0001-8560-3668 ; 0000-0003-2694-5427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10004843$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Yan-Kui</creatorcontrib><creatorcontrib>Lin, Jing-Wei</creatorcontrib><creatorcontrib>Peng, Li-Chi</creatorcontrib><creatorcontrib>Hua, Yi Miao</creatorcontrib><creatorcontrib>Chou, Tsung-Te</creatorcontrib><creatorcontrib>Kei, Chi-Chung</creatorcontrib><creatorcontrib>Lu, Chun-Chieh</creatorcontrib><creatorcontrib>Huang, Huai-Ying</creatorcontrib><creatorcontrib>Yeong, Sai Hooi</creatorcontrib><creatorcontrib>Lin, Yu-Ming</creatorcontrib><creatorcontrib>Liu, Po-Tsun</creatorcontrib><creatorcontrib>Chang, Edward-Yi</creatorcontrib><creatorcontrib>Lin, Chun-Hsiung</creatorcontrib><title>Electrical Characteristics of Ultrathin InZnO Thin-Film Transistors Prepared by Atomic Layer Deposition</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this article, enhancement-mode thin-film transistors (TFTs) with atomic layer deposition (ALD)-derived ultrathin (<inline-formula> <tex-math notation="LaTeX">\approx</tex-math> </inline-formula>3 nm) amorphous indium-zinc oxide (a-IZO) channel were demonstrated. Our devices showed improved device characteristics as benchmarked with thicker IZO thin-film channels. The ALD-deposited IZO channel TFT with an In/Zn ratio of <inline-formula> <tex-math notation="LaTeX">\approx</tex-math> </inline-formula>6:4 exhibited a high field-effect channel mobility (<inline-formula> <tex-math notation="LaTeX">\mu_{\text{FE}}\text{)}</tex-math> </inline-formula> of 53.6 cm<inline-formula> <tex-math notation="LaTeX">^{\text{2}}</tex-math> </inline-formula>/V-s, a threshold voltage (<inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{th}}\text{)}</tex-math> </inline-formula> of 0.28 V, a low subthreshold gate swing of 74 mV/decade, an <inline-formula> <tex-math notation="LaTeX">I_{\biosc{on}}/I_{\biosc{off}}</tex-math> </inline-formula> ratio of <inline-formula> <tex-math notation="LaTeX">></tex-math> </inline-formula>10<inline-formula> <tex-math notation="LaTeX">^{\text{9}}</tex-math> </inline-formula>, and a contact resistance of 0.18 k<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>m after 300 <inline-formula> <tex-math notation="LaTeX">{^{\circ}}</tex-math> </inline-formula>C anneal in oxygen atmosphere. Physical analysis, including X-ray and ultraviolet (UV) photoelectron spectra of IZO films, was conducted to understand the mechanisms of enhancement in electrical performance after annealing. The threshold voltages of the TFT also exhibited high stability (<inline-formula> <tex-math notation="LaTeX">\Delta\textit{V}_{\text{th, PBS}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula> 16 mV and <inline-formula> <tex-math notation="LaTeX">\Delta\textit{V}_{\text{th, NBS}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula> 12 mV) after positive bias stress (PBS) and negative bias stress (NBS) test for 3600 s. To the best of our knowledge, we reported the TFT with thinnest IZO ternary oxide semiconductor (OS) channel exhibiting superior channel mobility and subthreshold characteristics.]]></description><subject>Annealing</subject><subject>Atomic layer deposition (ALD)</subject><subject>Atomic layer epitaxy</subject><subject>Bias</subject><subject>Contact resistance</subject><subject>Electric contacts</subject><subject>high mobility</subject><subject>II-VI semiconductor materials</subject><subject>indium–zinc oxide (IZO)</subject><subject>InZnO thin-film transistors (TFTs)</subject><subject>Iron</subject><subject>Logic gates</subject><subject>oxygen annealing</subject><subject>Photoelectrons</subject><subject>reliability</subject><subject>Semiconductor devices</subject><subject>TFTs</subject><subject>Thin film transistors</subject><subject>Threshold voltage</subject><subject>Ultraviolet spectra</subject><subject>Uninterruptible power systems</subject><subject>Zinc oxide</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xV5x4rPoBlSqVIV1YLMe9UFdpHGwz9N-Tqh2Y7j3pee-kB6FnSiaUEvVWLeYTRhibcMaZKOQNGtE8LzIlhbxFI0JomSle8nv0EONhWKUQbIS-Fy3YFJw1LZ7tTTA2QXAxORuxb_C2TcGkvevwqvvqNrgaYrZ07RFXwXRxAH2I-DNAbwLscH3C0-SPzuK1OUHAc-h9dMn57hHdNaaN8HSdY7RdLqrZR7bevK9m03VmmWIpU5TyGmrKcwUql1DvFDQErC1VXVDGqawVobaxZVEKMFYSW9tCGguS1o2yfIxeL3f74H9-ISZ98L-hG15qVhRK5qWg-UCRC2WDjzFAo_vgjiacNCX6rFMPOvVZp77qHCovl4oDgH84IaIUnP8B1nFycg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Liang, Yan-Kui</creator><creator>Lin, Jing-Wei</creator><creator>Peng, Li-Chi</creator><creator>Hua, Yi Miao</creator><creator>Chou, Tsung-Te</creator><creator>Kei, Chi-Chung</creator><creator>Lu, Chun-Chieh</creator><creator>Huang, Huai-Ying</creator><creator>Yeong, Sai Hooi</creator><creator>Lin, Yu-Ming</creator><creator>Liu, Po-Tsun</creator><creator>Chang, Edward-Yi</creator><creator>Lin, Chun-Hsiung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1616-5240</orcidid><orcidid>https://orcid.org/0000-0003-1664-0312</orcidid><orcidid>https://orcid.org/0000-0001-8560-3668</orcidid><orcidid>https://orcid.org/0000-0003-2694-5427</orcidid></search><sort><creationdate>20230301</creationdate><title>Electrical Characteristics of Ultrathin InZnO Thin-Film Transistors Prepared by Atomic Layer Deposition</title><author>Liang, Yan-Kui ; Lin, Jing-Wei ; Peng, Li-Chi ; Hua, Yi Miao ; Chou, Tsung-Te ; Kei, Chi-Chung ; Lu, Chun-Chieh ; Huang, Huai-Ying ; Yeong, Sai Hooi ; Lin, Yu-Ming ; Liu, Po-Tsun ; Chang, Edward-Yi ; Lin, Chun-Hsiung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-9113beb1359e956ebd9ef0ecc89b712316b901cfc8784eac60cbc76ace61bf9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Atomic layer deposition (ALD)</topic><topic>Atomic layer epitaxy</topic><topic>Bias</topic><topic>Contact resistance</topic><topic>Electric contacts</topic><topic>high mobility</topic><topic>II-VI semiconductor materials</topic><topic>indium–zinc oxide (IZO)</topic><topic>InZnO thin-film transistors (TFTs)</topic><topic>Iron</topic><topic>Logic gates</topic><topic>oxygen annealing</topic><topic>Photoelectrons</topic><topic>reliability</topic><topic>Semiconductor devices</topic><topic>TFTs</topic><topic>Thin film transistors</topic><topic>Threshold voltage</topic><topic>Ultraviolet spectra</topic><topic>Uninterruptible power systems</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yan-Kui</creatorcontrib><creatorcontrib>Lin, Jing-Wei</creatorcontrib><creatorcontrib>Peng, Li-Chi</creatorcontrib><creatorcontrib>Hua, Yi Miao</creatorcontrib><creatorcontrib>Chou, Tsung-Te</creatorcontrib><creatorcontrib>Kei, Chi-Chung</creatorcontrib><creatorcontrib>Lu, Chun-Chieh</creatorcontrib><creatorcontrib>Huang, Huai-Ying</creatorcontrib><creatorcontrib>Yeong, Sai Hooi</creatorcontrib><creatorcontrib>Lin, Yu-Ming</creatorcontrib><creatorcontrib>Liu, Po-Tsun</creatorcontrib><creatorcontrib>Chang, Edward-Yi</creatorcontrib><creatorcontrib>Lin, Chun-Hsiung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Yan-Kui</au><au>Lin, Jing-Wei</au><au>Peng, Li-Chi</au><au>Hua, Yi Miao</au><au>Chou, Tsung-Te</au><au>Kei, Chi-Chung</au><au>Lu, Chun-Chieh</au><au>Huang, Huai-Ying</au><au>Yeong, Sai Hooi</au><au>Lin, Yu-Ming</au><au>Liu, Po-Tsun</au><au>Chang, Edward-Yi</au><au>Lin, Chun-Hsiung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Characteristics of Ultrathin InZnO Thin-Film Transistors Prepared by Atomic Layer Deposition</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>70</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this article, enhancement-mode thin-film transistors (TFTs) with atomic layer deposition (ALD)-derived ultrathin (<inline-formula> <tex-math notation="LaTeX">\approx</tex-math> </inline-formula>3 nm) amorphous indium-zinc oxide (a-IZO) channel were demonstrated. Our devices showed improved device characteristics as benchmarked with thicker IZO thin-film channels. The ALD-deposited IZO channel TFT with an In/Zn ratio of <inline-formula> <tex-math notation="LaTeX">\approx</tex-math> </inline-formula>6:4 exhibited a high field-effect channel mobility (<inline-formula> <tex-math notation="LaTeX">\mu_{\text{FE}}\text{)}</tex-math> </inline-formula> of 53.6 cm<inline-formula> <tex-math notation="LaTeX">^{\text{2}}</tex-math> </inline-formula>/V-s, a threshold voltage (<inline-formula> <tex-math notation="LaTeX">\textit{V}_{\text{th}}\text{)}</tex-math> </inline-formula> of 0.28 V, a low subthreshold gate swing of 74 mV/decade, an <inline-formula> <tex-math notation="LaTeX">I_{\biosc{on}}/I_{\biosc{off}}</tex-math> </inline-formula> ratio of <inline-formula> <tex-math notation="LaTeX">></tex-math> </inline-formula>10<inline-formula> <tex-math notation="LaTeX">^{\text{9}}</tex-math> </inline-formula>, and a contact resistance of 0.18 k<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>m after 300 <inline-formula> <tex-math notation="LaTeX">{^{\circ}}</tex-math> </inline-formula>C anneal in oxygen atmosphere. Physical analysis, including X-ray and ultraviolet (UV) photoelectron spectra of IZO films, was conducted to understand the mechanisms of enhancement in electrical performance after annealing. The threshold voltages of the TFT also exhibited high stability (<inline-formula> <tex-math notation="LaTeX">\Delta\textit{V}_{\text{th, PBS}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula> 16 mV and <inline-formula> <tex-math notation="LaTeX">\Delta\textit{V}_{\text{th, NBS}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula> 12 mV) after positive bias stress (PBS) and negative bias stress (NBS) test for 3600 s. To the best of our knowledge, we reported the TFT with thinnest IZO ternary oxide semiconductor (OS) channel exhibiting superior channel mobility and subthreshold characteristics.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3232476</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1616-5240</orcidid><orcidid>https://orcid.org/0000-0003-1664-0312</orcidid><orcidid>https://orcid.org/0000-0001-8560-3668</orcidid><orcidid>https://orcid.org/0000-0003-2694-5427</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-03, Vol.70 (3), p.1-6
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2022_3232476
source IEEE Electronic Library (IEL)
subjects Annealing
Atomic layer deposition (ALD)
Atomic layer epitaxy
Bias
Contact resistance
Electric contacts
high mobility
II-VI semiconductor materials
indium–zinc oxide (IZO)
InZnO thin-film transistors (TFTs)
Iron
Logic gates
oxygen annealing
Photoelectrons
reliability
Semiconductor devices
TFTs
Thin film transistors
Threshold voltage
Ultraviolet spectra
Uninterruptible power systems
Zinc oxide
title Electrical Characteristics of Ultrathin InZnO Thin-Film Transistors Prepared by Atomic Layer Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Characteristics%20of%20Ultrathin%20InZnO%20Thin-Film%20Transistors%20Prepared%20by%20Atomic%20Layer%20Deposition&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Liang,%20Yan-Kui&rft.date=2023-03-01&rft.volume=70&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3232476&rft_dat=%3Cproquest_RIE%3E2779658415%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779658415&rft_id=info:pmid/&rft_ieee_id=10004843&rfr_iscdi=true