An Extraction Method for Mobility Degradation and Contact Resistance of Graphene Transistors

The intrinsic mobility degradation coefficient, contact resistance, and the transconductance parameter of graphene field-effect transistors (GFETs) are extracted for different technologies by considering a novel transport model embracing mobility degradation effects within the charge channel control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-07, Vol.69 (7), p.4037-4041
Hauptverfasser: Pacheco-Sanchez, Anibal, Mavredakis, Nikolaos, Feijoo, Pedro C., Jimenez, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4041
container_issue 7
container_start_page 4037
container_title IEEE transactions on electron devices
container_volume 69
creator Pacheco-Sanchez, Anibal
Mavredakis, Nikolaos
Feijoo, Pedro C.
Jimenez, David
description The intrinsic mobility degradation coefficient, contact resistance, and the transconductance parameter of graphene field-effect transistors (GFETs) are extracted for different technologies by considering a novel transport model embracing mobility degradation effects within the charge channel control description. By considering the mobility degradation-based model, a straightforward extraction methodology, not provided before, is enabled by applying the concept of the well-known {Y} -function to the {I} - {V} device characteristics. The method works regardless of the gate device architecture. An accurate description of experimental data of fabricated devices is achieved with the underlying transport equation by using the extracted parameters. An evaluation of the channel resistance, enabled by the extracted parameters here, has also been provided.
doi_str_mv 10.1109/TED.2022.3176830
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2022_3176830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9784875</ieee_id><sourcerecordid>2679392834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8130cf074b4c99688b2e747d735975d1411471e916d1994b622f1eac0776a9c83</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMks3HsbS1Ci2C1JsQsrtZu6UmNYlg_71bWzwNw_u8M_AgdAtkBED0w2o2HVFC6YiBFIqRMzSAspSFFlycowEhoArNFLtEVylt-lVwTgfofezx7CdHW-cueLx0eR0a3IaIl6Hqtl3e46n7iLaxf7n1DZ4En3scv7rUpWx97XBo8Tza3dp5h1fR-kMQYrpGF63dJndzmkP09jhbTZ6Kxcv8eTJeFDXVkAsFjNQtkbzitdZCqYo6yWUjWall2QAH4BKcBtGA1rwSlLbgbE2kFFbXig3R_fHuLoavb5ey2YTv6PuXhgqpmaaK8Z4iR6qOIaXoWrOL3aeNewPEHBya3qE5ODQnh33l7ljpnHP_uJaKK1myX12SbBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679392834</pqid></control><display><type>article</type><title>An Extraction Method for Mobility Degradation and Contact Resistance of Graphene Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Pacheco-Sanchez, Anibal ; Mavredakis, Nikolaos ; Feijoo, Pedro C. ; Jimenez, David</creator><creatorcontrib>Pacheco-Sanchez, Anibal ; Mavredakis, Nikolaos ; Feijoo, Pedro C. ; Jimenez, David</creatorcontrib><description><![CDATA[The intrinsic mobility degradation coefficient, contact resistance, and the transconductance parameter of graphene field-effect transistors (GFETs) are extracted for different technologies by considering a novel transport model embracing mobility degradation effects within the charge channel control description. By considering the mobility degradation-based model, a straightforward extraction methodology, not provided before, is enabled by applying the concept of the well-known <inline-formula> <tex-math notation="LaTeX">{Y} </tex-math></inline-formula>-function to the <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> device characteristics. The method works regardless of the gate device architecture. An accurate description of experimental data of fabricated devices is achieved with the underlying transport equation by using the extracted parameters. An evaluation of the channel resistance, enabled by the extracted parameters here, has also been provided.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3176830</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Y -function ; Adaptation models ; Channel resistance ; Computer architecture ; Contact resistance ; Degradation ; Electronic devices ; Field effect transistors ; Graphene ; graphene field-effect transistor (FET) ; Logic gates ; Mathematical models ; mobility degradation ; Parameters ; Resistance ; Semiconductor devices ; Transconductance ; Transport equations</subject><ispartof>IEEE transactions on electron devices, 2022-07, Vol.69 (7), p.4037-4041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8130cf074b4c99688b2e747d735975d1411471e916d1994b622f1eac0776a9c83</citedby><cites>FETCH-LOGICAL-c291t-8130cf074b4c99688b2e747d735975d1411471e916d1994b622f1eac0776a9c83</cites><orcidid>0000-0003-3630-9416 ; 0000-0002-8148-198X ; 0000-0002-7653-4573 ; 0000-0002-0897-0605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9784875$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9784875$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pacheco-Sanchez, Anibal</creatorcontrib><creatorcontrib>Mavredakis, Nikolaos</creatorcontrib><creatorcontrib>Feijoo, Pedro C.</creatorcontrib><creatorcontrib>Jimenez, David</creatorcontrib><title>An Extraction Method for Mobility Degradation and Contact Resistance of Graphene Transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[The intrinsic mobility degradation coefficient, contact resistance, and the transconductance parameter of graphene field-effect transistors (GFETs) are extracted for different technologies by considering a novel transport model embracing mobility degradation effects within the charge channel control description. By considering the mobility degradation-based model, a straightforward extraction methodology, not provided before, is enabled by applying the concept of the well-known <inline-formula> <tex-math notation="LaTeX">{Y} </tex-math></inline-formula>-function to the <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> device characteristics. The method works regardless of the gate device architecture. An accurate description of experimental data of fabricated devices is achieved with the underlying transport equation by using the extracted parameters. An evaluation of the channel resistance, enabled by the extracted parameters here, has also been provided.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Y -function</subject><subject>Adaptation models</subject><subject>Channel resistance</subject><subject>Computer architecture</subject><subject>Contact resistance</subject><subject>Degradation</subject><subject>Electronic devices</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>graphene field-effect transistor (FET)</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>mobility degradation</subject><subject>Parameters</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>Transconductance</subject><subject>Transport equations</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMks3HsbS1Ci2C1JsQsrtZu6UmNYlg_71bWzwNw_u8M_AgdAtkBED0w2o2HVFC6YiBFIqRMzSAspSFFlycowEhoArNFLtEVylt-lVwTgfofezx7CdHW-cueLx0eR0a3IaIl6Hqtl3e46n7iLaxf7n1DZ4En3scv7rUpWx97XBo8Tza3dp5h1fR-kMQYrpGF63dJndzmkP09jhbTZ6Kxcv8eTJeFDXVkAsFjNQtkbzitdZCqYo6yWUjWall2QAH4BKcBtGA1rwSlLbgbE2kFFbXig3R_fHuLoavb5ey2YTv6PuXhgqpmaaK8Z4iR6qOIaXoWrOL3aeNewPEHBya3qE5ODQnh33l7ljpnHP_uJaKK1myX12SbBY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Pacheco-Sanchez, Anibal</creator><creator>Mavredakis, Nikolaos</creator><creator>Feijoo, Pedro C.</creator><creator>Jimenez, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3630-9416</orcidid><orcidid>https://orcid.org/0000-0002-8148-198X</orcidid><orcidid>https://orcid.org/0000-0002-7653-4573</orcidid><orcidid>https://orcid.org/0000-0002-0897-0605</orcidid></search><sort><creationdate>20220701</creationdate><title>An Extraction Method for Mobility Degradation and Contact Resistance of Graphene Transistors</title><author>Pacheco-Sanchez, Anibal ; Mavredakis, Nikolaos ; Feijoo, Pedro C. ; Jimenez, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8130cf074b4c99688b2e747d735975d1411471e916d1994b622f1eac0776a9c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Y -function</topic><topic>Adaptation models</topic><topic>Channel resistance</topic><topic>Computer architecture</topic><topic>Contact resistance</topic><topic>Degradation</topic><topic>Electronic devices</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>graphene field-effect transistor (FET)</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>mobility degradation</topic><topic>Parameters</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>Transconductance</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacheco-Sanchez, Anibal</creatorcontrib><creatorcontrib>Mavredakis, Nikolaos</creatorcontrib><creatorcontrib>Feijoo, Pedro C.</creatorcontrib><creatorcontrib>Jimenez, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pacheco-Sanchez, Anibal</au><au>Mavredakis, Nikolaos</au><au>Feijoo, Pedro C.</au><au>Jimenez, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extraction Method for Mobility Degradation and Contact Resistance of Graphene Transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>69</volume><issue>7</issue><spage>4037</spage><epage>4041</epage><pages>4037-4041</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[The intrinsic mobility degradation coefficient, contact resistance, and the transconductance parameter of graphene field-effect transistors (GFETs) are extracted for different technologies by considering a novel transport model embracing mobility degradation effects within the charge channel control description. By considering the mobility degradation-based model, a straightforward extraction methodology, not provided before, is enabled by applying the concept of the well-known <inline-formula> <tex-math notation="LaTeX">{Y} </tex-math></inline-formula>-function to the <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> device characteristics. The method works regardless of the gate device architecture. An accurate description of experimental data of fabricated devices is achieved with the underlying transport equation by using the extracted parameters. An evaluation of the channel resistance, enabled by the extracted parameters here, has also been provided.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3176830</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3630-9416</orcidid><orcidid>https://orcid.org/0000-0002-8148-198X</orcidid><orcidid>https://orcid.org/0000-0002-7653-4573</orcidid><orcidid>https://orcid.org/0000-0002-0897-0605</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-07, Vol.69 (7), p.4037-4041
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2022_3176830
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Y -function
Adaptation models
Channel resistance
Computer architecture
Contact resistance
Degradation
Electronic devices
Field effect transistors
Graphene
graphene field-effect transistor (FET)
Logic gates
Mathematical models
mobility degradation
Parameters
Resistance
Semiconductor devices
Transconductance
Transport equations
title An Extraction Method for Mobility Degradation and Contact Resistance of Graphene Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extraction%20Method%20for%20Mobility%20Degradation%20and%20Contact%20Resistance%20of%20Graphene%20Transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Pacheco-Sanchez,%20Anibal&rft.date=2022-07-01&rft.volume=69&rft.issue=7&rft.spage=4037&rft.epage=4041&rft.pages=4037-4041&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3176830&rft_dat=%3Cproquest_RIE%3E2679392834%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679392834&rft_id=info:pmid/&rft_ieee_id=9784875&rfr_iscdi=true