Enhanced Performance of GaN Schottky Barrier Diodes by Oxygen Plasma Treatment
In this study, a Ni/GaN Schottky barrier diode (SBD) with both groove beveled and oxygen plasma terminations was fabricated and evaluated. The mixed termination structure was formed by inductive coupled plasma (ICP) in oxygen atmosphere. Confirmed by the measurement results of transmission electron...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-04, Vol.69 (4), p.1792-1797 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1797 |
---|---|
container_issue | 4 |
container_start_page | 1792 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Li, Xiaobo Lin, Feng Wu, Junye Zhang, Zhiyue Song, Lijun Pu, Taofei Li, Xicong Lin, Xinnan Lu, Youming Liu, Xinke |
description | In this study, a Ni/GaN Schottky barrier diode (SBD) with both groove beveled and oxygen plasma terminations was fabricated and evaluated. The mixed termination structure was formed by inductive coupled plasma (ICP) in oxygen atmosphere. Confirmed by the measurement results of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), a 3.5-nm-thick GaO x passivation layer and beveled termination with an angle of 65° were identified around the edge of the electrode. Compared with the conventional samples, the treatment samples demonstrated the reverse leakage current reduced by one order of magnitude, the ON-resistance reduced by approximately 20%, and the breakdown voltage increased by 80%. Further technology computer-aided design (TCAD) simulation shows that the mixed termination structure can effectively inhibit the electric field concentration effect. Finally, temperature dependence characteristics show that the zero-temperature coefficient (ZTC) bias points of treatment samples locate in the low-voltage region, indicating that the devices are more suitable for the integrated circuit (IC). |
doi_str_mv | 10.1109/TED.2022.3151563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2022_3151563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721097</ieee_id><sourcerecordid>2643021061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ddbbc14b9e1c25da516c82457b56a9e7dbbac2f165d73e60d0f682a984cff9ca3</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKd3wUvAc2c-mrQ56janMLaB8xzS9I3rXJuZdGD_ezs2PL08vM8H_BC6p2REKVFP6-lkxAhjI04FFZJfoAEVIkuUTOUlGhBC80TxnF-jmxi3vZRpygZoMW02prFQ4hUE50N9FNg7PDML_GE3vm2_O_xiQqgg4EnlS4i46PDyt_uCBq92JtYGrwOYtoamvUVXzuwi3J3vEH2-Ttfjt2S-nL2Pn-eJZYq2SVkWhaVpoYBaJkojqLQ5S0VWCGkUZP3bWOaoFGXGQZKSOJkzo_LUOqes4UP0eOrdB_9zgNjqrT-Epp_UTKacMEok7V3k5LLBxxjA6X2oahM6TYk-UtM9NX2kps_U-sjDKVIBwL9dZX2hyvgfMcRoYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643021061</pqid></control><display><type>article</type><title>Enhanced Performance of GaN Schottky Barrier Diodes by Oxygen Plasma Treatment</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiaobo ; Lin, Feng ; Wu, Junye ; Zhang, Zhiyue ; Song, Lijun ; Pu, Taofei ; Li, Xicong ; Lin, Xinnan ; Lu, Youming ; Liu, Xinke</creator><creatorcontrib>Li, Xiaobo ; Lin, Feng ; Wu, Junye ; Zhang, Zhiyue ; Song, Lijun ; Pu, Taofei ; Li, Xicong ; Lin, Xinnan ; Lu, Youming ; Liu, Xinke</creatorcontrib><description>In this study, a Ni/GaN Schottky barrier diode (SBD) with both groove beveled and oxygen plasma terminations was fabricated and evaluated. The mixed termination structure was formed by inductive coupled plasma (ICP) in oxygen atmosphere. Confirmed by the measurement results of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), a 3.5-nm-thick GaO x passivation layer and beveled termination with an angle of 65° were identified around the edge of the electrode. Compared with the conventional samples, the treatment samples demonstrated the reverse leakage current reduced by one order of magnitude, the ON-resistance reduced by approximately 20%, and the breakdown voltage increased by 80%. Further technology computer-aided design (TCAD) simulation shows that the mixed termination structure can effectively inhibit the electric field concentration effect. Finally, temperature dependence characteristics show that the zero-temperature coefficient (ZTC) bias points of treatment samples locate in the low-voltage region, indicating that the devices are more suitable for the integrated circuit (IC).</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3151563</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; CAD ; Computer aided design ; Electric fields ; Electric potential ; Gallium nitrides ; GaN ; Grooves ; Inductively coupled plasma ; Integrated circuits ; Leakage current ; Leakage currents ; low leakage current ; Optimized production technology ; Oxygen plasma ; oxygen plasma treatment (OPT) ; Passivation ; Photoelectrons ; Plasmas ; Schottky barrier diode (SBD) ; Schottky barriers ; Schottky diodes ; Temperature dependence ; Voltage ; X ray photoelectron spectroscopy ; zero-temperature coefficient (ZTC)</subject><ispartof>IEEE transactions on electron devices, 2022-04, Vol.69 (4), p.1792-1797</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ddbbc14b9e1c25da516c82457b56a9e7dbbac2f165d73e60d0f682a984cff9ca3</citedby><cites>FETCH-LOGICAL-c291t-ddbbc14b9e1c25da516c82457b56a9e7dbbac2f165d73e60d0f682a984cff9ca3</cites><orcidid>0000-0002-3472-5945 ; 0000-0003-3861-8992 ; 0000-0002-0549-3508 ; 0000-0002-8964-7518 ; 0000-0002-9618-2085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9721097$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Wu, Junye</creatorcontrib><creatorcontrib>Zhang, Zhiyue</creatorcontrib><creatorcontrib>Song, Lijun</creatorcontrib><creatorcontrib>Pu, Taofei</creatorcontrib><creatorcontrib>Li, Xicong</creatorcontrib><creatorcontrib>Lin, Xinnan</creatorcontrib><creatorcontrib>Lu, Youming</creatorcontrib><creatorcontrib>Liu, Xinke</creatorcontrib><title>Enhanced Performance of GaN Schottky Barrier Diodes by Oxygen Plasma Treatment</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this study, a Ni/GaN Schottky barrier diode (SBD) with both groove beveled and oxygen plasma terminations was fabricated and evaluated. The mixed termination structure was formed by inductive coupled plasma (ICP) in oxygen atmosphere. Confirmed by the measurement results of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), a 3.5-nm-thick GaO x passivation layer and beveled termination with an angle of 65° were identified around the edge of the electrode. Compared with the conventional samples, the treatment samples demonstrated the reverse leakage current reduced by one order of magnitude, the ON-resistance reduced by approximately 20%, and the breakdown voltage increased by 80%. Further technology computer-aided design (TCAD) simulation shows that the mixed termination structure can effectively inhibit the electric field concentration effect. Finally, temperature dependence characteristics show that the zero-temperature coefficient (ZTC) bias points of treatment samples locate in the low-voltage region, indicating that the devices are more suitable for the integrated circuit (IC).</description><subject>Anodes</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>Grooves</subject><subject>Inductively coupled plasma</subject><subject>Integrated circuits</subject><subject>Leakage current</subject><subject>Leakage currents</subject><subject>low leakage current</subject><subject>Optimized production technology</subject><subject>Oxygen plasma</subject><subject>oxygen plasma treatment (OPT)</subject><subject>Passivation</subject><subject>Photoelectrons</subject><subject>Plasmas</subject><subject>Schottky barrier diode (SBD)</subject><subject>Schottky barriers</subject><subject>Schottky diodes</subject><subject>Temperature dependence</subject><subject>Voltage</subject><subject>X ray photoelectron spectroscopy</subject><subject>zero-temperature coefficient (ZTC)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYxoMoOKd3wUvAc2c-mrQ56janMLaB8xzS9I3rXJuZdGD_ezs2PL08vM8H_BC6p2REKVFP6-lkxAhjI04FFZJfoAEVIkuUTOUlGhBC80TxnF-jmxi3vZRpygZoMW02prFQ4hUE50N9FNg7PDML_GE3vm2_O_xiQqgg4EnlS4i46PDyt_uCBq92JtYGrwOYtoamvUVXzuwi3J3vEH2-Ttfjt2S-nL2Pn-eJZYq2SVkWhaVpoYBaJkojqLQ5S0VWCGkUZP3bWOaoFGXGQZKSOJkzo_LUOqes4UP0eOrdB_9zgNjqrT-Epp_UTKacMEok7V3k5LLBxxjA6X2oahM6TYk-UtM9NX2kps_U-sjDKVIBwL9dZX2hyvgfMcRoYA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Li, Xiaobo</creator><creator>Lin, Feng</creator><creator>Wu, Junye</creator><creator>Zhang, Zhiyue</creator><creator>Song, Lijun</creator><creator>Pu, Taofei</creator><creator>Li, Xicong</creator><creator>Lin, Xinnan</creator><creator>Lu, Youming</creator><creator>Liu, Xinke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3472-5945</orcidid><orcidid>https://orcid.org/0000-0003-3861-8992</orcidid><orcidid>https://orcid.org/0000-0002-0549-3508</orcidid><orcidid>https://orcid.org/0000-0002-8964-7518</orcidid><orcidid>https://orcid.org/0000-0002-9618-2085</orcidid></search><sort><creationdate>20220401</creationdate><title>Enhanced Performance of GaN Schottky Barrier Diodes by Oxygen Plasma Treatment</title><author>Li, Xiaobo ; Lin, Feng ; Wu, Junye ; Zhang, Zhiyue ; Song, Lijun ; Pu, Taofei ; Li, Xicong ; Lin, Xinnan ; Lu, Youming ; Liu, Xinke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ddbbc14b9e1c25da516c82457b56a9e7dbbac2f165d73e60d0f682a984cff9ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>Grooves</topic><topic>Inductively coupled plasma</topic><topic>Integrated circuits</topic><topic>Leakage current</topic><topic>Leakage currents</topic><topic>low leakage current</topic><topic>Optimized production technology</topic><topic>Oxygen plasma</topic><topic>oxygen plasma treatment (OPT)</topic><topic>Passivation</topic><topic>Photoelectrons</topic><topic>Plasmas</topic><topic>Schottky barrier diode (SBD)</topic><topic>Schottky barriers</topic><topic>Schottky diodes</topic><topic>Temperature dependence</topic><topic>Voltage</topic><topic>X ray photoelectron spectroscopy</topic><topic>zero-temperature coefficient (ZTC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Wu, Junye</creatorcontrib><creatorcontrib>Zhang, Zhiyue</creatorcontrib><creatorcontrib>Song, Lijun</creatorcontrib><creatorcontrib>Pu, Taofei</creatorcontrib><creatorcontrib>Li, Xicong</creatorcontrib><creatorcontrib>Lin, Xinnan</creatorcontrib><creatorcontrib>Lu, Youming</creatorcontrib><creatorcontrib>Liu, Xinke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiaobo</au><au>Lin, Feng</au><au>Wu, Junye</au><au>Zhang, Zhiyue</au><au>Song, Lijun</au><au>Pu, Taofei</au><au>Li, Xicong</au><au>Lin, Xinnan</au><au>Lu, Youming</au><au>Liu, Xinke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Performance of GaN Schottky Barrier Diodes by Oxygen Plasma Treatment</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>69</volume><issue>4</issue><spage>1792</spage><epage>1797</epage><pages>1792-1797</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this study, a Ni/GaN Schottky barrier diode (SBD) with both groove beveled and oxygen plasma terminations was fabricated and evaluated. The mixed termination structure was formed by inductive coupled plasma (ICP) in oxygen atmosphere. Confirmed by the measurement results of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), a 3.5-nm-thick GaO x passivation layer and beveled termination with an angle of 65° were identified around the edge of the electrode. Compared with the conventional samples, the treatment samples demonstrated the reverse leakage current reduced by one order of magnitude, the ON-resistance reduced by approximately 20%, and the breakdown voltage increased by 80%. Further technology computer-aided design (TCAD) simulation shows that the mixed termination structure can effectively inhibit the electric field concentration effect. Finally, temperature dependence characteristics show that the zero-temperature coefficient (ZTC) bias points of treatment samples locate in the low-voltage region, indicating that the devices are more suitable for the integrated circuit (IC).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3151563</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3472-5945</orcidid><orcidid>https://orcid.org/0000-0003-3861-8992</orcidid><orcidid>https://orcid.org/0000-0002-0549-3508</orcidid><orcidid>https://orcid.org/0000-0002-8964-7518</orcidid><orcidid>https://orcid.org/0000-0002-9618-2085</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-04, Vol.69 (4), p.1792-1797 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2022_3151563 |
source | IEEE Electronic Library (IEL) |
subjects | Anodes CAD Computer aided design Electric fields Electric potential Gallium nitrides GaN Grooves Inductively coupled plasma Integrated circuits Leakage current Leakage currents low leakage current Optimized production technology Oxygen plasma oxygen plasma treatment (OPT) Passivation Photoelectrons Plasmas Schottky barrier diode (SBD) Schottky barriers Schottky diodes Temperature dependence Voltage X ray photoelectron spectroscopy zero-temperature coefficient (ZTC) |
title | Enhanced Performance of GaN Schottky Barrier Diodes by Oxygen Plasma Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Performance%20of%20GaN%20Schottky%20Barrier%20Diodes%20by%20Oxygen%20Plasma%20Treatment&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Li,%20Xiaobo&rft.date=2022-04-01&rft.volume=69&rft.issue=4&rft.spage=1792&rft.epage=1797&rft.pages=1792-1797&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3151563&rft_dat=%3Cproquest_RIE%3E2643021061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643021061&rft_id=info:pmid/&rft_ieee_id=9721097&rfr_iscdi=true |