The Significance on Structural Modulation of Buffer and Gate Insulator for ALD Based InGaZnO TFT Applications
Atomic layer deposition (ALD) has been studied extensively to employ oxide semiconductor thin film transistor (TFT) including both active layer and gate insulator (GI). Herein, we developed an ALD sandwich structure, which deposits both semiconductor and GI by ALD. In contrast to the previous result...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-12, Vol.68 (12), p.6147-6153 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6153 |
---|---|
container_issue | 12 |
container_start_page | 6147 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Choi, Wan-Ho Kim, Kyoungrok Jeong, Seok-Goo Han, Ju-Hwan Jang, Jaeman Noh, Jiyong Park, Kwon-Shik Kim, Jeom-Jae Yoon, Soo-Young Jeon, Woojin Park, Jin-Seong |
description | Atomic layer deposition (ALD) has been studied extensively to employ oxide semiconductor thin film transistor (TFT) including both active layer and gate insulator (GI). Herein, we developed an ALD sandwich structure, which deposits both semiconductor and GI by ALD. In contrast to the previous results using sputter In-Ga-Zn-O (IGZO), ALD sandwich structure IGZO TFT exhibited severe deterioration in its electrical performance when the Al 2 O 3 was adopted for both buffer layer and GI application. Through measurement of hydrogen permeability of ALD insulators and secondary ion mass spectroscopy of each sandwich structure after annealing, we found a hydrogen accumulation effect between Al 2 O 3 and ALD IGZO interface layer, which caused deterioration of electrical performance. In contrast, TFTs with ALD SiO 2 , which has proper hydrogen diffusivity, chosen as the buffer and GI had favorable electric properties of 28.17 cm 2 / \text{V}\cdot \text{s} , 0.20 V/dec, 0.96, and 0.12 V for the mobility, {V}_{\text {th}} , subthreshold swing (SS), and hysteresis. In this regard, an optimized GI structure via the ALD SiO 2 and Al 2 O 3 in situ process based on excellent interface formation with the semiconductor and hydrogen barrier performance, respectively, was developed. This functional GI structure consisting of SiO 2 and Al 2 O 3 exhibited excellent TFT characteristics (27.52 cm 2 / \text{V}\cdot \text{s} , 0.24 V/dec, and 1.07 V for the mobility, SS, and {V}_{\text {th}} , respectively) with improved stability even after hydrogen annealing, which was used to examine the resistance to external hydrogen, showing a threshold voltage shift of −0.15 V and a SS shift of 0.01 V/dec. |
doi_str_mv | 10.1109/TED.2021.3117749 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3117749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9586046</ieee_id><sourcerecordid>2604924461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f047a17a64640d1a8cb5c473208f20d58fee9a3b2bb61d86a2b1252fe6d56b283</originalsourceid><addsrcrecordid>eNo9ULFOwzAQtRBIlMKOxGKJOcXnOI49tqUtlYo6NCwslpPYkCpNgp0M_D2OWjGcTvfuvXenh9AjkBkAkS_Z6nVGCYVZDJCmTF6hCSRJGknO-DWaEAIikrGIb9Gd98cwcsboBJ2yb4MP1VdT2arQTWFw2-BD74aiH5yu8XtbDrXuq4C2Fi8Ga43DuinxRvcGbxs_bluHbaj57hUvtDdlwDf6s9njbJ3hedfVwXq08Pfoxuram4dLn6KP9SpbvkW7_Wa7nO-igkroI0tYqiHV4XVGStCiyJOCpTElwlJSJsIaI3Wc0zznUAquaQ40odbwMuE5FfEUPZ99O9f-DMb36tgOrgknFeWEScoYh8AiZ1bhWu-dsapz1Um7XwVEjaGqEKoaQ1WXUIPk6SypjDH_dJmI4MrjP0rAcdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604924461</pqid></control><display><type>article</type><title>The Significance on Structural Modulation of Buffer and Gate Insulator for ALD Based InGaZnO TFT Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Choi, Wan-Ho ; Kim, Kyoungrok ; Jeong, Seok-Goo ; Han, Ju-Hwan ; Jang, Jaeman ; Noh, Jiyong ; Park, Kwon-Shik ; Kim, Jeom-Jae ; Yoon, Soo-Young ; Jeon, Woojin ; Park, Jin-Seong</creator><creatorcontrib>Choi, Wan-Ho ; Kim, Kyoungrok ; Jeong, Seok-Goo ; Han, Ju-Hwan ; Jang, Jaeman ; Noh, Jiyong ; Park, Kwon-Shik ; Kim, Jeom-Jae ; Yoon, Soo-Young ; Jeon, Woojin ; Park, Jin-Seong</creatorcontrib><description><![CDATA[Atomic layer deposition (ALD) has been studied extensively to employ oxide semiconductor thin film transistor (TFT) including both active layer and gate insulator (GI). Herein, we developed an ALD sandwich structure, which deposits both semiconductor and GI by ALD. In contrast to the previous results using sputter In-Ga-Zn-O (IGZO), ALD sandwich structure IGZO TFT exhibited severe deterioration in its electrical performance when the Al 2 O 3 was adopted for both buffer layer and GI application. Through measurement of hydrogen permeability of ALD insulators and secondary ion mass spectroscopy of each sandwich structure after annealing, we found a hydrogen accumulation effect between Al 2 O 3 and ALD IGZO interface layer, which caused deterioration of electrical performance. In contrast, TFTs with ALD SiO 2 , which has proper hydrogen diffusivity, chosen as the buffer and GI had favorable electric properties of 28.17 cm 2 /<inline-formula> <tex-math notation="LaTeX">\text{V}\cdot \text{s} </tex-math></inline-formula>, 0.20 V/dec, 0.96, and 0.12 V for the mobility, <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>, subthreshold swing (SS), and hysteresis. In this regard, an optimized GI structure via the ALD SiO 2 and Al 2 O 3 in situ process based on excellent interface formation with the semiconductor and hydrogen barrier performance, respectively, was developed. This functional GI structure consisting of SiO 2 and Al 2 O 3 exhibited excellent TFT characteristics (27.52 cm 2 /<inline-formula> <tex-math notation="LaTeX">\text{V}\cdot \text{s} </tex-math></inline-formula>, 0.24 V/dec, and 1.07 V for the mobility, SS, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>, respectively) with improved stability even after hydrogen annealing, which was used to examine the resistance to external hydrogen, showing a threshold voltage shift of −0.15 V and a SS shift of 0.01 V/dec.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3117749</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum oxide ; Annealing ; atomic layer deposition (ALD) ; Atomic layer epitaxy ; Buffer layers ; Deterioration ; Electric properties ; Hydrogen ; hydrogen permeability ; Indium gallium zinc oxide ; Insulators ; Logic gates ; Permeability ; Sandwich structures ; Secondary ion mass spectroscopy ; Semiconductor device measurement ; Semiconductor devices ; Silicon dioxide ; silicon oxide ; Sputtering ; Thin film transistors ; Threshold voltage</subject><ispartof>IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6147-6153</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f047a17a64640d1a8cb5c473208f20d58fee9a3b2bb61d86a2b1252fe6d56b283</citedby><cites>FETCH-LOGICAL-c291t-f047a17a64640d1a8cb5c473208f20d58fee9a3b2bb61d86a2b1252fe6d56b283</cites><orcidid>0000-0002-8477-9124 ; 0000-0002-5963-1048 ; 0000-0002-9070-5666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9586046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9586046$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Choi, Wan-Ho</creatorcontrib><creatorcontrib>Kim, Kyoungrok</creatorcontrib><creatorcontrib>Jeong, Seok-Goo</creatorcontrib><creatorcontrib>Han, Ju-Hwan</creatorcontrib><creatorcontrib>Jang, Jaeman</creatorcontrib><creatorcontrib>Noh, Jiyong</creatorcontrib><creatorcontrib>Park, Kwon-Shik</creatorcontrib><creatorcontrib>Kim, Jeom-Jae</creatorcontrib><creatorcontrib>Yoon, Soo-Young</creatorcontrib><creatorcontrib>Jeon, Woojin</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><title>The Significance on Structural Modulation of Buffer and Gate Insulator for ALD Based InGaZnO TFT Applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Atomic layer deposition (ALD) has been studied extensively to employ oxide semiconductor thin film transistor (TFT) including both active layer and gate insulator (GI). Herein, we developed an ALD sandwich structure, which deposits both semiconductor and GI by ALD. In contrast to the previous results using sputter In-Ga-Zn-O (IGZO), ALD sandwich structure IGZO TFT exhibited severe deterioration in its electrical performance when the Al 2 O 3 was adopted for both buffer layer and GI application. Through measurement of hydrogen permeability of ALD insulators and secondary ion mass spectroscopy of each sandwich structure after annealing, we found a hydrogen accumulation effect between Al 2 O 3 and ALD IGZO interface layer, which caused deterioration of electrical performance. In contrast, TFTs with ALD SiO 2 , which has proper hydrogen diffusivity, chosen as the buffer and GI had favorable electric properties of 28.17 cm 2 /<inline-formula> <tex-math notation="LaTeX">\text{V}\cdot \text{s} </tex-math></inline-formula>, 0.20 V/dec, 0.96, and 0.12 V for the mobility, <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>, subthreshold swing (SS), and hysteresis. In this regard, an optimized GI structure via the ALD SiO 2 and Al 2 O 3 in situ process based on excellent interface formation with the semiconductor and hydrogen barrier performance, respectively, was developed. This functional GI structure consisting of SiO 2 and Al 2 O 3 exhibited excellent TFT characteristics (27.52 cm 2 /<inline-formula> <tex-math notation="LaTeX">\text{V}\cdot \text{s} </tex-math></inline-formula>, 0.24 V/dec, and 1.07 V for the mobility, SS, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>, respectively) with improved stability even after hydrogen annealing, which was used to examine the resistance to external hydrogen, showing a threshold voltage shift of −0.15 V and a SS shift of 0.01 V/dec.]]></description><subject>Aluminum oxide</subject><subject>Annealing</subject><subject>atomic layer deposition (ALD)</subject><subject>Atomic layer epitaxy</subject><subject>Buffer layers</subject><subject>Deterioration</subject><subject>Electric properties</subject><subject>Hydrogen</subject><subject>hydrogen permeability</subject><subject>Indium gallium zinc oxide</subject><subject>Insulators</subject><subject>Logic gates</subject><subject>Permeability</subject><subject>Sandwich structures</subject><subject>Secondary ion mass spectroscopy</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>silicon oxide</subject><subject>Sputtering</subject><subject>Thin film transistors</subject><subject>Threshold voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9ULFOwzAQtRBIlMKOxGKJOcXnOI49tqUtlYo6NCwslpPYkCpNgp0M_D2OWjGcTvfuvXenh9AjkBkAkS_Z6nVGCYVZDJCmTF6hCSRJGknO-DWaEAIikrGIb9Gd98cwcsboBJ2yb4MP1VdT2arQTWFw2-BD74aiH5yu8XtbDrXuq4C2Fi8Ga43DuinxRvcGbxs_bluHbaj57hUvtDdlwDf6s9njbJ3hedfVwXq08Pfoxuram4dLn6KP9SpbvkW7_Wa7nO-igkroI0tYqiHV4XVGStCiyJOCpTElwlJSJsIaI3Wc0zznUAquaQ40odbwMuE5FfEUPZ99O9f-DMb36tgOrgknFeWEScoYh8AiZ1bhWu-dsapz1Um7XwVEjaGqEKoaQ1WXUIPk6SypjDH_dJmI4MrjP0rAcdY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Choi, Wan-Ho</creator><creator>Kim, Kyoungrok</creator><creator>Jeong, Seok-Goo</creator><creator>Han, Ju-Hwan</creator><creator>Jang, Jaeman</creator><creator>Noh, Jiyong</creator><creator>Park, Kwon-Shik</creator><creator>Kim, Jeom-Jae</creator><creator>Yoon, Soo-Young</creator><creator>Jeon, Woojin</creator><creator>Park, Jin-Seong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8477-9124</orcidid><orcidid>https://orcid.org/0000-0002-5963-1048</orcidid><orcidid>https://orcid.org/0000-0002-9070-5666</orcidid></search><sort><creationdate>20211201</creationdate><title>The Significance on Structural Modulation of Buffer and Gate Insulator for ALD Based InGaZnO TFT Applications</title><author>Choi, Wan-Ho ; Kim, Kyoungrok ; Jeong, Seok-Goo ; Han, Ju-Hwan ; Jang, Jaeman ; Noh, Jiyong ; Park, Kwon-Shik ; Kim, Jeom-Jae ; Yoon, Soo-Young ; Jeon, Woojin ; Park, Jin-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f047a17a64640d1a8cb5c473208f20d58fee9a3b2bb61d86a2b1252fe6d56b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Annealing</topic><topic>atomic layer deposition (ALD)</topic><topic>Atomic layer epitaxy</topic><topic>Buffer layers</topic><topic>Deterioration</topic><topic>Electric properties</topic><topic>Hydrogen</topic><topic>hydrogen permeability</topic><topic>Indium gallium zinc oxide</topic><topic>Insulators</topic><topic>Logic gates</topic><topic>Permeability</topic><topic>Sandwich structures</topic><topic>Secondary ion mass spectroscopy</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>silicon oxide</topic><topic>Sputtering</topic><topic>Thin film transistors</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Wan-Ho</creatorcontrib><creatorcontrib>Kim, Kyoungrok</creatorcontrib><creatorcontrib>Jeong, Seok-Goo</creatorcontrib><creatorcontrib>Han, Ju-Hwan</creatorcontrib><creatorcontrib>Jang, Jaeman</creatorcontrib><creatorcontrib>Noh, Jiyong</creatorcontrib><creatorcontrib>Park, Kwon-Shik</creatorcontrib><creatorcontrib>Kim, Jeom-Jae</creatorcontrib><creatorcontrib>Yoon, Soo-Young</creatorcontrib><creatorcontrib>Jeon, Woojin</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Choi, Wan-Ho</au><au>Kim, Kyoungrok</au><au>Jeong, Seok-Goo</au><au>Han, Ju-Hwan</au><au>Jang, Jaeman</au><au>Noh, Jiyong</au><au>Park, Kwon-Shik</au><au>Kim, Jeom-Jae</au><au>Yoon, Soo-Young</au><au>Jeon, Woojin</au><au>Park, Jin-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Significance on Structural Modulation of Buffer and Gate Insulator for ALD Based InGaZnO TFT Applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>6147</spage><epage>6153</epage><pages>6147-6153</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Atomic layer deposition (ALD) has been studied extensively to employ oxide semiconductor thin film transistor (TFT) including both active layer and gate insulator (GI). Herein, we developed an ALD sandwich structure, which deposits both semiconductor and GI by ALD. In contrast to the previous results using sputter In-Ga-Zn-O (IGZO), ALD sandwich structure IGZO TFT exhibited severe deterioration in its electrical performance when the Al 2 O 3 was adopted for both buffer layer and GI application. Through measurement of hydrogen permeability of ALD insulators and secondary ion mass spectroscopy of each sandwich structure after annealing, we found a hydrogen accumulation effect between Al 2 O 3 and ALD IGZO interface layer, which caused deterioration of electrical performance. In contrast, TFTs with ALD SiO 2 , which has proper hydrogen diffusivity, chosen as the buffer and GI had favorable electric properties of 28.17 cm 2 /<inline-formula> <tex-math notation="LaTeX">\text{V}\cdot \text{s} </tex-math></inline-formula>, 0.20 V/dec, 0.96, and 0.12 V for the mobility, <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>, subthreshold swing (SS), and hysteresis. In this regard, an optimized GI structure via the ALD SiO 2 and Al 2 O 3 in situ process based on excellent interface formation with the semiconductor and hydrogen barrier performance, respectively, was developed. This functional GI structure consisting of SiO 2 and Al 2 O 3 exhibited excellent TFT characteristics (27.52 cm 2 /<inline-formula> <tex-math notation="LaTeX">\text{V}\cdot \text{s} </tex-math></inline-formula>, 0.24 V/dec, and 1.07 V for the mobility, SS, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>, respectively) with improved stability even after hydrogen annealing, which was used to examine the resistance to external hydrogen, showing a threshold voltage shift of −0.15 V and a SS shift of 0.01 V/dec.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3117749</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8477-9124</orcidid><orcidid>https://orcid.org/0000-0002-5963-1048</orcidid><orcidid>https://orcid.org/0000-0002-9070-5666</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6147-6153 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2021_3117749 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum oxide Annealing atomic layer deposition (ALD) Atomic layer epitaxy Buffer layers Deterioration Electric properties Hydrogen hydrogen permeability Indium gallium zinc oxide Insulators Logic gates Permeability Sandwich structures Secondary ion mass spectroscopy Semiconductor device measurement Semiconductor devices Silicon dioxide silicon oxide Sputtering Thin film transistors Threshold voltage |
title | The Significance on Structural Modulation of Buffer and Gate Insulator for ALD Based InGaZnO TFT Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Significance%20on%20Structural%20Modulation%20of%20Buffer%20and%20Gate%20Insulator%20for%20ALD%20Based%20InGaZnO%20TFT%20Applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Choi,%20Wan-Ho&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=6147&rft.epage=6153&rft.pages=6147-6153&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3117749&rft_dat=%3Cproquest_RIE%3E2604924461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604924461&rft_id=info:pmid/&rft_ieee_id=9586046&rfr_iscdi=true |