A More Hardware-Oriented Spiking Neural Network Based on Leading Memory Technology and Its Application With Reinforcement Learning

In recent days, more hardware-driven artificial intelligence system capable of brain-like low-energy consumption is gaining ever-increasing interest. The hardware-driven property lies in the low-power synaptic device and its array along with the area and energy-efficient neuron circuits. In this wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-09, Vol.68 (9), p.4411-4417
Hauptverfasser: Kim, Min-Hwi, Hwang, Sungmin, Bang, Suhyun, Kim, Tae-Hyeon, Lee, Dong Keun, Ansari, Md. Hasan Raza, Cho, Seongjae, Park, Byung-Gook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4417
container_issue 9
container_start_page 4411
container_title IEEE transactions on electron devices
container_volume 68
creator Kim, Min-Hwi
Hwang, Sungmin
Bang, Suhyun
Kim, Tae-Hyeon
Lee, Dong Keun
Ansari, Md. Hasan Raza
Cho, Seongjae
Park, Byung-Gook
description In recent days, more hardware-driven artificial intelligence system capable of brain-like low-energy consumption is gaining ever-increasing interest. The hardware-driven property lies in the low-power synaptic device and its array along with the area and energy-efficient neuron circuits. In this work, a spiking neural network (SNN) based on analog synaptic device of resistive-switching random access memory (RRAM) is constructed from the experimentally fabricated devices. Furthermore, the capability of the designed SNN hardware for sequential tasks through an optimal reinforcement learning (RL) algorithm is demonstrated. More specifically, the Rush Hour game is conducted as an example of applications for the sequential task for which an SNN architecture is plausibly suited. The rule of the game is simple but has not been demonstrated by a hardware-oriented artificial neural network (ANN) yet, and in this work, it is reported that the analog RRAM synaptic devices in the cross-point array architecture successfully solve the problem via the RL algorithm.
doi_str_mv 10.1109/TED.2021.3099769
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3099769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9506994</ieee_id><sourcerecordid>2562950273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ec09576f84215c2a70252faf4b7507c70c8132369f0caab7f65e45c7b42242dc3</originalsourceid><addsrcrecordid>eNo9kM1PAjEUxBujiYjeTbw08bzYdvtBj4goJCCJYjxuSvctlI_t2l1CuPqXWwLxNHl5v5lJBqF7SjqUEv00G7x0GGG0kxKtldQXqEWFUImWXF6iFiG0m-i0m16jm7pexVNyzlrot4cnPgAempDvTYBkGhyUDeT4s3JrVy7wO-yC2URp9j6s8bOp49OXeAwmP_4nsPXhgGdgl6Xf-MUBmzLHo6bGvaraOGsaF-lv1yzxB7iy8MHCNlYcA0IZE27RVWE2NdydtY2-Xgez_jAZT99G_d44sUzTJgFLtFCy6HJGhWVGESZYYQo-V4Ioq4jt0pSlUhfEGjNXhRTAhVVzzhhnuU3b6PGUWwX_s4O6yVZ-F8pYmTEhmRaEqTRS5ETZ4Os6QJFVwW1NOGSUZMels7h0dlw6Oy8dLQ8niwOAfzzmSa15-gdQ-3pa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562950273</pqid></control><display><type>article</type><title>A More Hardware-Oriented Spiking Neural Network Based on Leading Memory Technology and Its Application With Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Min-Hwi ; Hwang, Sungmin ; Bang, Suhyun ; Kim, Tae-Hyeon ; Lee, Dong Keun ; Ansari, Md. Hasan Raza ; Cho, Seongjae ; Park, Byung-Gook</creator><creatorcontrib>Kim, Min-Hwi ; Hwang, Sungmin ; Bang, Suhyun ; Kim, Tae-Hyeon ; Lee, Dong Keun ; Ansari, Md. Hasan Raza ; Cho, Seongjae ; Park, Byung-Gook</creatorcontrib><description>In recent days, more hardware-driven artificial intelligence system capable of brain-like low-energy consumption is gaining ever-increasing interest. The hardware-driven property lies in the low-power synaptic device and its array along with the area and energy-efficient neuron circuits. In this work, a spiking neural network (SNN) based on analog synaptic device of resistive-switching random access memory (RRAM) is constructed from the experimentally fabricated devices. Furthermore, the capability of the designed SNN hardware for sequential tasks through an optimal reinforcement learning (RL) algorithm is demonstrated. More specifically, the Rush Hour game is conducted as an example of applications for the sequential task for which an SNN architecture is plausibly suited. The rule of the game is simple but has not been demonstrated by a hardware-oriented artificial neural network (ANN) yet, and in this work, it is reported that the analog RRAM synaptic devices in the cross-point array architecture successfully solve the problem via the RL algorithm.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3099769</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Artificial intelligence ; Artificial neural network (ANN) ; Artificial neural networks ; Biological neural networks ; Computer architecture ; cross-point array architecture ; Energy consumption ; Games ; Hardware ; hardware-driven artificial intelligence ; Learning theory ; low energy consumption ; Machine learning ; Neural networks ; Neurons ; Random access memory ; reinforcement learning (RL) ; resistive-switching random access memory (RRAM) ; Rush Hour game ; sequential task ; Silicon ; Silicon compounds ; Spiking ; spiking neural network (SNN) ; Switches ; synaptic device</subject><ispartof>IEEE transactions on electron devices, 2021-09, Vol.68 (9), p.4411-4417</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ec09576f84215c2a70252faf4b7507c70c8132369f0caab7f65e45c7b42242dc3</citedby><cites>FETCH-LOGICAL-c291t-ec09576f84215c2a70252faf4b7507c70c8132369f0caab7f65e45c7b42242dc3</cites><orcidid>0000-0002-2962-2458 ; 0000-0003-0964-7583 ; 0000-0001-8520-718X ; 0000-0002-2617-7627 ; 0000-0002-8587-4588 ; 0000-0001-8347-8656 ; 0000-0002-7519-4896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9506994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9506994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Min-Hwi</creatorcontrib><creatorcontrib>Hwang, Sungmin</creatorcontrib><creatorcontrib>Bang, Suhyun</creatorcontrib><creatorcontrib>Kim, Tae-Hyeon</creatorcontrib><creatorcontrib>Lee, Dong Keun</creatorcontrib><creatorcontrib>Ansari, Md. Hasan Raza</creatorcontrib><creatorcontrib>Cho, Seongjae</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><title>A More Hardware-Oriented Spiking Neural Network Based on Leading Memory Technology and Its Application With Reinforcement Learning</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In recent days, more hardware-driven artificial intelligence system capable of brain-like low-energy consumption is gaining ever-increasing interest. The hardware-driven property lies in the low-power synaptic device and its array along with the area and energy-efficient neuron circuits. In this work, a spiking neural network (SNN) based on analog synaptic device of resistive-switching random access memory (RRAM) is constructed from the experimentally fabricated devices. Furthermore, the capability of the designed SNN hardware for sequential tasks through an optimal reinforcement learning (RL) algorithm is demonstrated. More specifically, the Rush Hour game is conducted as an example of applications for the sequential task for which an SNN architecture is plausibly suited. The rule of the game is simple but has not been demonstrated by a hardware-oriented artificial neural network (ANN) yet, and in this work, it is reported that the analog RRAM synaptic devices in the cross-point array architecture successfully solve the problem via the RL algorithm.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Artificial intelligence</subject><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Computer architecture</subject><subject>cross-point array architecture</subject><subject>Energy consumption</subject><subject>Games</subject><subject>Hardware</subject><subject>hardware-driven artificial intelligence</subject><subject>Learning theory</subject><subject>low energy consumption</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Random access memory</subject><subject>reinforcement learning (RL)</subject><subject>resistive-switching random access memory (RRAM)</subject><subject>Rush Hour game</subject><subject>sequential task</subject><subject>Silicon</subject><subject>Silicon compounds</subject><subject>Spiking</subject><subject>spiking neural network (SNN)</subject><subject>Switches</subject><subject>synaptic device</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEUxBujiYjeTbw08bzYdvtBj4goJCCJYjxuSvctlI_t2l1CuPqXWwLxNHl5v5lJBqF7SjqUEv00G7x0GGG0kxKtldQXqEWFUImWXF6iFiG0m-i0m16jm7pexVNyzlrot4cnPgAempDvTYBkGhyUDeT4s3JrVy7wO-yC2URp9j6s8bOp49OXeAwmP_4nsPXhgGdgl6Xf-MUBmzLHo6bGvaraOGsaF-lv1yzxB7iy8MHCNlYcA0IZE27RVWE2NdydtY2-Xgez_jAZT99G_d44sUzTJgFLtFCy6HJGhWVGESZYYQo-V4Ioq4jt0pSlUhfEGjNXhRTAhVVzzhhnuU3b6PGUWwX_s4O6yVZ-F8pYmTEhmRaEqTRS5ETZ4Os6QJFVwW1NOGSUZMels7h0dlw6Oy8dLQ8niwOAfzzmSa15-gdQ-3pa</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Kim, Min-Hwi</creator><creator>Hwang, Sungmin</creator><creator>Bang, Suhyun</creator><creator>Kim, Tae-Hyeon</creator><creator>Lee, Dong Keun</creator><creator>Ansari, Md. Hasan Raza</creator><creator>Cho, Seongjae</creator><creator>Park, Byung-Gook</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid><orcidid>https://orcid.org/0000-0003-0964-7583</orcidid><orcidid>https://orcid.org/0000-0001-8520-718X</orcidid><orcidid>https://orcid.org/0000-0002-2617-7627</orcidid><orcidid>https://orcid.org/0000-0002-8587-4588</orcidid><orcidid>https://orcid.org/0000-0001-8347-8656</orcidid><orcidid>https://orcid.org/0000-0002-7519-4896</orcidid></search><sort><creationdate>20210901</creationdate><title>A More Hardware-Oriented Spiking Neural Network Based on Leading Memory Technology and Its Application With Reinforcement Learning</title><author>Kim, Min-Hwi ; Hwang, Sungmin ; Bang, Suhyun ; Kim, Tae-Hyeon ; Lee, Dong Keun ; Ansari, Md. Hasan Raza ; Cho, Seongjae ; Park, Byung-Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ec09576f84215c2a70252faf4b7507c70c8132369f0caab7f65e45c7b42242dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Artificial intelligence</topic><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Computer architecture</topic><topic>cross-point array architecture</topic><topic>Energy consumption</topic><topic>Games</topic><topic>Hardware</topic><topic>hardware-driven artificial intelligence</topic><topic>Learning theory</topic><topic>low energy consumption</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Random access memory</topic><topic>reinforcement learning (RL)</topic><topic>resistive-switching random access memory (RRAM)</topic><topic>Rush Hour game</topic><topic>sequential task</topic><topic>Silicon</topic><topic>Silicon compounds</topic><topic>Spiking</topic><topic>spiking neural network (SNN)</topic><topic>Switches</topic><topic>synaptic device</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min-Hwi</creatorcontrib><creatorcontrib>Hwang, Sungmin</creatorcontrib><creatorcontrib>Bang, Suhyun</creatorcontrib><creatorcontrib>Kim, Tae-Hyeon</creatorcontrib><creatorcontrib>Lee, Dong Keun</creatorcontrib><creatorcontrib>Ansari, Md. Hasan Raza</creatorcontrib><creatorcontrib>Cho, Seongjae</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Min-Hwi</au><au>Hwang, Sungmin</au><au>Bang, Suhyun</au><au>Kim, Tae-Hyeon</au><au>Lee, Dong Keun</au><au>Ansari, Md. Hasan Raza</au><au>Cho, Seongjae</au><au>Park, Byung-Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A More Hardware-Oriented Spiking Neural Network Based on Leading Memory Technology and Its Application With Reinforcement Learning</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>9</issue><spage>4411</spage><epage>4417</epage><pages>4411-4417</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In recent days, more hardware-driven artificial intelligence system capable of brain-like low-energy consumption is gaining ever-increasing interest. The hardware-driven property lies in the low-power synaptic device and its array along with the area and energy-efficient neuron circuits. In this work, a spiking neural network (SNN) based on analog synaptic device of resistive-switching random access memory (RRAM) is constructed from the experimentally fabricated devices. Furthermore, the capability of the designed SNN hardware for sequential tasks through an optimal reinforcement learning (RL) algorithm is demonstrated. More specifically, the Rush Hour game is conducted as an example of applications for the sequential task for which an SNN architecture is plausibly suited. The rule of the game is simple but has not been demonstrated by a hardware-oriented artificial neural network (ANN) yet, and in this work, it is reported that the analog RRAM synaptic devices in the cross-point array architecture successfully solve the problem via the RL algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3099769</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid><orcidid>https://orcid.org/0000-0003-0964-7583</orcidid><orcidid>https://orcid.org/0000-0001-8520-718X</orcidid><orcidid>https://orcid.org/0000-0002-2617-7627</orcidid><orcidid>https://orcid.org/0000-0002-8587-4588</orcidid><orcidid>https://orcid.org/0000-0001-8347-8656</orcidid><orcidid>https://orcid.org/0000-0002-7519-4896</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-09, Vol.68 (9), p.4411-4417
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2021_3099769
source IEEE Electronic Library (IEL)
subjects Algorithms
Arrays
Artificial intelligence
Artificial neural network (ANN)
Artificial neural networks
Biological neural networks
Computer architecture
cross-point array architecture
Energy consumption
Games
Hardware
hardware-driven artificial intelligence
Learning theory
low energy consumption
Machine learning
Neural networks
Neurons
Random access memory
reinforcement learning (RL)
resistive-switching random access memory (RRAM)
Rush Hour game
sequential task
Silicon
Silicon compounds
Spiking
spiking neural network (SNN)
Switches
synaptic device
title A More Hardware-Oriented Spiking Neural Network Based on Leading Memory Technology and Its Application With Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20More%20Hardware-Oriented%20Spiking%20Neural%20Network%20Based%20on%20Leading%20Memory%20Technology%20and%20Its%20Application%20With%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kim,%20Min-Hwi&rft.date=2021-09-01&rft.volume=68&rft.issue=9&rft.spage=4411&rft.epage=4417&rft.pages=4411-4417&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3099769&rft_dat=%3Cproquest_RIE%3E2562950273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562950273&rft_id=info:pmid/&rft_ieee_id=9506994&rfr_iscdi=true