Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes
In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-06, Vol.68 (6), p.2977-2983 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2983 |
---|---|
container_issue | 6 |
container_start_page | 2977 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Tian, Hanwen Shi, Ningjie Wang, Zhanliang Wang, Shaomeng Duan, Zhaoyun Gong, Huarong Lu, Zhigang Paoloni, Claudio Feng, Jinjun Gong, Yubin |
description | In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmholtz's equation. An algorithm to obtain the S-matrix by the equivalent circuit method is presented. The relativistic Boris method is applied to accelerate macroparticles. The exchanged power is computed by the work the electromagnetic field applied to the macroparticles. The theoretical model is applied for validation to a {G} -band staggered double vane TWT and validated in comparison with CST Particle Studio and simulations without losses and reflections. The convergence of this algorithm is also discussed. The simulation time of the model is substantial faster than 3-D particle-in-cell (PIC) simulations. |
doi_str_mv | 10.1109/TED.2021.3071212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3071212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9405461</ieee_id><sourcerecordid>2530113441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-14b29a253c4dc6e4713f301a6fc689e7b6554e765a19f3473bc06533a22048263</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrztzkjRtL3VOHUwGWtllSNNT17G2M-kG_nuzD7w6HHje53BeQm6BjQBY9pBPnkeccRgJlgAHfkYGEMdJlCmpzsmAMUijTKTiklx5vwqrkpIPSDNtNq7bYUnfuxLXtOocfULTRAuzQzpte3TG9nXX0kXdL-l82dSWzjrv0VPTlvQDqzUeAE-7in4uEfuDgOYuGNZ1-00PqnxboL8mF5VZe7w5zSH5epnk47doNn-djh9nkRVC9BHIgmeGx8LK0iqUCYhKMDCqsirNMClUHEtMVGwgq4RMRGGZioUwnDOZciWG5P7oDb_9bNH3etVtXRtO6mBlAEJKCBQ7UtaFhxxWeuPqxrhfDUzvS9WhVL0vVZ9KDZG7Y6RGxH88kyyWCsQf-jhw-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530113441</pqid></control><display><type>article</type><title>Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes</title><source>IEEE Electronic Library (IEL)</source><creator>Tian, Hanwen ; Shi, Ningjie ; Wang, Zhanliang ; Wang, Shaomeng ; Duan, Zhaoyun ; Gong, Huarong ; Lu, Zhigang ; Paoloni, Claudio ; Feng, Jinjun ; Gong, Yubin</creator><creatorcontrib>Tian, Hanwen ; Shi, Ningjie ; Wang, Zhanliang ; Wang, Shaomeng ; Duan, Zhaoyun ; Gong, Huarong ; Lu, Zhigang ; Paoloni, Claudio ; Feng, Jinjun ; Gong, Yubin</creatorcontrib><description>In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmholtz's equation. An algorithm to obtain the S-matrix by the equivalent circuit method is presented. The relativistic Boris method is applied to accelerate macroparticles. The exchanged power is computed by the work the electromagnetic field applied to the macroparticles. The theoretical model is applied for validation to a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band staggered double vane TWT and validated in comparison with CST Particle Studio and simulations without losses and reflections. The convergence of this algorithm is also discussed. The simulation time of the model is substantial faster than 3-D particle-in-cell (PIC) simulations.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3071212</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Beam-wave interaction ; Blades ; Electromagnetic fields ; Equivalent circuits ; Harmonic analysis ; Integrated circuit modeling ; losses ; Macroparticles ; Magnetic circuits ; Metals ; Particle in cell technique ; reflections ; sheet beam traveling wave tube (TWT) ; Simulation ; Solid modeling ; Space charge ; Traveling wave tubes ; Traveling waves ; Wave interaction</subject><ispartof>IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2977-2983</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-14b29a253c4dc6e4713f301a6fc689e7b6554e765a19f3473bc06533a22048263</citedby><cites>FETCH-LOGICAL-c333t-14b29a253c4dc6e4713f301a6fc689e7b6554e765a19f3473bc06533a22048263</cites><orcidid>0000-0001-8413-1048 ; 0000-0002-2179-5223 ; 0000-0002-1350-5329 ; 0000-0002-9474-8604 ; 0000-0002-0265-0862 ; 0000-0002-2708-9418 ; 0000-0001-6431-0559 ; 0000-0001-7438-5845 ; 0000-0002-9559-1266 ; 0000-0003-3014-1309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9405461$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9405461$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian, Hanwen</creatorcontrib><creatorcontrib>Shi, Ningjie</creatorcontrib><creatorcontrib>Wang, Zhanliang</creatorcontrib><creatorcontrib>Wang, Shaomeng</creatorcontrib><creatorcontrib>Duan, Zhaoyun</creatorcontrib><creatorcontrib>Gong, Huarong</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Paoloni, Claudio</creatorcontrib><creatorcontrib>Feng, Jinjun</creatorcontrib><creatorcontrib>Gong, Yubin</creatorcontrib><title>Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmholtz's equation. An algorithm to obtain the S-matrix by the equivalent circuit method is presented. The relativistic Boris method is applied to accelerate macroparticles. The exchanged power is computed by the work the electromagnetic field applied to the macroparticles. The theoretical model is applied for validation to a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band staggered double vane TWT and validated in comparison with CST Particle Studio and simulations without losses and reflections. The convergence of this algorithm is also discussed. The simulation time of the model is substantial faster than 3-D particle-in-cell (PIC) simulations.</description><subject>Algorithms</subject><subject>Beam-wave interaction</subject><subject>Blades</subject><subject>Electromagnetic fields</subject><subject>Equivalent circuits</subject><subject>Harmonic analysis</subject><subject>Integrated circuit modeling</subject><subject>losses</subject><subject>Macroparticles</subject><subject>Magnetic circuits</subject><subject>Metals</subject><subject>Particle in cell technique</subject><subject>reflections</subject><subject>sheet beam traveling wave tube (TWT)</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>Space charge</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>Wave interaction</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrztzkjRtL3VOHUwGWtllSNNT17G2M-kG_nuzD7w6HHje53BeQm6BjQBY9pBPnkeccRgJlgAHfkYGEMdJlCmpzsmAMUijTKTiklx5vwqrkpIPSDNtNq7bYUnfuxLXtOocfULTRAuzQzpte3TG9nXX0kXdL-l82dSWzjrv0VPTlvQDqzUeAE-7in4uEfuDgOYuGNZ1-00PqnxboL8mF5VZe7w5zSH5epnk47doNn-djh9nkRVC9BHIgmeGx8LK0iqUCYhKMDCqsirNMClUHEtMVGwgq4RMRGGZioUwnDOZciWG5P7oDb_9bNH3etVtXRtO6mBlAEJKCBQ7UtaFhxxWeuPqxrhfDUzvS9WhVL0vVZ9KDZG7Y6RGxH88kyyWCsQf-jhw-g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Tian, Hanwen</creator><creator>Shi, Ningjie</creator><creator>Wang, Zhanliang</creator><creator>Wang, Shaomeng</creator><creator>Duan, Zhaoyun</creator><creator>Gong, Huarong</creator><creator>Lu, Zhigang</creator><creator>Paoloni, Claudio</creator><creator>Feng, Jinjun</creator><creator>Gong, Yubin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8413-1048</orcidid><orcidid>https://orcid.org/0000-0002-2179-5223</orcidid><orcidid>https://orcid.org/0000-0002-1350-5329</orcidid><orcidid>https://orcid.org/0000-0002-9474-8604</orcidid><orcidid>https://orcid.org/0000-0002-0265-0862</orcidid><orcidid>https://orcid.org/0000-0002-2708-9418</orcidid><orcidid>https://orcid.org/0000-0001-6431-0559</orcidid><orcidid>https://orcid.org/0000-0001-7438-5845</orcidid><orcidid>https://orcid.org/0000-0002-9559-1266</orcidid><orcidid>https://orcid.org/0000-0003-3014-1309</orcidid></search><sort><creationdate>20210601</creationdate><title>Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes</title><author>Tian, Hanwen ; Shi, Ningjie ; Wang, Zhanliang ; Wang, Shaomeng ; Duan, Zhaoyun ; Gong, Huarong ; Lu, Zhigang ; Paoloni, Claudio ; Feng, Jinjun ; Gong, Yubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-14b29a253c4dc6e4713f301a6fc689e7b6554e765a19f3473bc06533a22048263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Beam-wave interaction</topic><topic>Blades</topic><topic>Electromagnetic fields</topic><topic>Equivalent circuits</topic><topic>Harmonic analysis</topic><topic>Integrated circuit modeling</topic><topic>losses</topic><topic>Macroparticles</topic><topic>Magnetic circuits</topic><topic>Metals</topic><topic>Particle in cell technique</topic><topic>reflections</topic><topic>sheet beam traveling wave tube (TWT)</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>Space charge</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Hanwen</creatorcontrib><creatorcontrib>Shi, Ningjie</creatorcontrib><creatorcontrib>Wang, Zhanliang</creatorcontrib><creatorcontrib>Wang, Shaomeng</creatorcontrib><creatorcontrib>Duan, Zhaoyun</creatorcontrib><creatorcontrib>Gong, Huarong</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Paoloni, Claudio</creatorcontrib><creatorcontrib>Feng, Jinjun</creatorcontrib><creatorcontrib>Gong, Yubin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Hanwen</au><au>Shi, Ningjie</au><au>Wang, Zhanliang</au><au>Wang, Shaomeng</au><au>Duan, Zhaoyun</au><au>Gong, Huarong</au><au>Lu, Zhigang</au><au>Paoloni, Claudio</au><au>Feng, Jinjun</au><au>Gong, Yubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>2977</spage><epage>2983</epage><pages>2977-2983</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmholtz's equation. An algorithm to obtain the S-matrix by the equivalent circuit method is presented. The relativistic Boris method is applied to accelerate macroparticles. The exchanged power is computed by the work the electromagnetic field applied to the macroparticles. The theoretical model is applied for validation to a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band staggered double vane TWT and validated in comparison with CST Particle Studio and simulations without losses and reflections. The convergence of this algorithm is also discussed. The simulation time of the model is substantial faster than 3-D particle-in-cell (PIC) simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3071212</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8413-1048</orcidid><orcidid>https://orcid.org/0000-0002-2179-5223</orcidid><orcidid>https://orcid.org/0000-0002-1350-5329</orcidid><orcidid>https://orcid.org/0000-0002-9474-8604</orcidid><orcidid>https://orcid.org/0000-0002-0265-0862</orcidid><orcidid>https://orcid.org/0000-0002-2708-9418</orcidid><orcidid>https://orcid.org/0000-0001-6431-0559</orcidid><orcidid>https://orcid.org/0000-0001-7438-5845</orcidid><orcidid>https://orcid.org/0000-0002-9559-1266</orcidid><orcidid>https://orcid.org/0000-0003-3014-1309</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2977-2983 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2021_3071212 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Beam-wave interaction Blades Electromagnetic fields Equivalent circuits Harmonic analysis Integrated circuit modeling losses Macroparticles Magnetic circuits Metals Particle in cell technique reflections sheet beam traveling wave tube (TWT) Simulation Solid modeling Space charge Traveling wave tubes Traveling waves Wave interaction |
title | Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Model%20for%20Beam-Wave%20Interaction%20With%20Ohmic%20Losses%20and%20Reflections%20of%20Sheet%20Beam%20Traveling%20Wave%20Tubes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Tian,%20Hanwen&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=2977&rft.epage=2983&rft.pages=2977-2983&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3071212&rft_dat=%3Cproquest_RIE%3E2530113441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530113441&rft_id=info:pmid/&rft_ieee_id=9405461&rfr_iscdi=true |