Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes

In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-06, Vol.68 (6), p.2977-2983
Hauptverfasser: Tian, Hanwen, Shi, Ningjie, Wang, Zhanliang, Wang, Shaomeng, Duan, Zhaoyun, Gong, Huarong, Lu, Zhigang, Paoloni, Claudio, Feng, Jinjun, Gong, Yubin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2983
container_issue 6
container_start_page 2977
container_title IEEE transactions on electron devices
container_volume 68
creator Tian, Hanwen
Shi, Ningjie
Wang, Zhanliang
Wang, Shaomeng
Duan, Zhaoyun
Gong, Huarong
Lu, Zhigang
Paoloni, Claudio
Feng, Jinjun
Gong, Yubin
description In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmholtz's equation. An algorithm to obtain the S-matrix by the equivalent circuit method is presented. The relativistic Boris method is applied to accelerate macroparticles. The exchanged power is computed by the work the electromagnetic field applied to the macroparticles. The theoretical model is applied for validation to a {G} -band staggered double vane TWT and validated in comparison with CST Particle Studio and simulations without losses and reflections. The convergence of this algorithm is also discussed. The simulation time of the model is substantial faster than 3-D particle-in-cell (PIC) simulations.
doi_str_mv 10.1109/TED.2021.3071212
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3071212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9405461</ieee_id><sourcerecordid>2530113441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-14b29a253c4dc6e4713f301a6fc689e7b6554e765a19f3473bc06533a22048263</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrztzkjRtL3VOHUwGWtllSNNT17G2M-kG_nuzD7w6HHje53BeQm6BjQBY9pBPnkeccRgJlgAHfkYGEMdJlCmpzsmAMUijTKTiklx5vwqrkpIPSDNtNq7bYUnfuxLXtOocfULTRAuzQzpte3TG9nXX0kXdL-l82dSWzjrv0VPTlvQDqzUeAE-7in4uEfuDgOYuGNZ1-00PqnxboL8mF5VZe7w5zSH5epnk47doNn-djh9nkRVC9BHIgmeGx8LK0iqUCYhKMDCqsirNMClUHEtMVGwgq4RMRGGZioUwnDOZciWG5P7oDb_9bNH3etVtXRtO6mBlAEJKCBQ7UtaFhxxWeuPqxrhfDUzvS9WhVL0vVZ9KDZG7Y6RGxH88kyyWCsQf-jhw-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530113441</pqid></control><display><type>article</type><title>Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes</title><source>IEEE Electronic Library (IEL)</source><creator>Tian, Hanwen ; Shi, Ningjie ; Wang, Zhanliang ; Wang, Shaomeng ; Duan, Zhaoyun ; Gong, Huarong ; Lu, Zhigang ; Paoloni, Claudio ; Feng, Jinjun ; Gong, Yubin</creator><creatorcontrib>Tian, Hanwen ; Shi, Ningjie ; Wang, Zhanliang ; Wang, Shaomeng ; Duan, Zhaoyun ; Gong, Huarong ; Lu, Zhigang ; Paoloni, Claudio ; Feng, Jinjun ; Gong, Yubin</creatorcontrib><description>In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmholtz's equation. An algorithm to obtain the S-matrix by the equivalent circuit method is presented. The relativistic Boris method is applied to accelerate macroparticles. The exchanged power is computed by the work the electromagnetic field applied to the macroparticles. The theoretical model is applied for validation to a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{G} &lt;/tex-math&gt;&lt;/inline-formula&gt;-band staggered double vane TWT and validated in comparison with CST Particle Studio and simulations without losses and reflections. The convergence of this algorithm is also discussed. The simulation time of the model is substantial faster than 3-D particle-in-cell (PIC) simulations.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3071212</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Beam-wave interaction ; Blades ; Electromagnetic fields ; Equivalent circuits ; Harmonic analysis ; Integrated circuit modeling ; losses ; Macroparticles ; Magnetic circuits ; Metals ; Particle in cell technique ; reflections ; sheet beam traveling wave tube (TWT) ; Simulation ; Solid modeling ; Space charge ; Traveling wave tubes ; Traveling waves ; Wave interaction</subject><ispartof>IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2977-2983</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-14b29a253c4dc6e4713f301a6fc689e7b6554e765a19f3473bc06533a22048263</citedby><cites>FETCH-LOGICAL-c333t-14b29a253c4dc6e4713f301a6fc689e7b6554e765a19f3473bc06533a22048263</cites><orcidid>0000-0001-8413-1048 ; 0000-0002-2179-5223 ; 0000-0002-1350-5329 ; 0000-0002-9474-8604 ; 0000-0002-0265-0862 ; 0000-0002-2708-9418 ; 0000-0001-6431-0559 ; 0000-0001-7438-5845 ; 0000-0002-9559-1266 ; 0000-0003-3014-1309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9405461$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9405461$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian, Hanwen</creatorcontrib><creatorcontrib>Shi, Ningjie</creatorcontrib><creatorcontrib>Wang, Zhanliang</creatorcontrib><creatorcontrib>Wang, Shaomeng</creatorcontrib><creatorcontrib>Duan, Zhaoyun</creatorcontrib><creatorcontrib>Gong, Huarong</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Paoloni, Claudio</creatorcontrib><creatorcontrib>Feng, Jinjun</creatorcontrib><creatorcontrib>Gong, Yubin</creatorcontrib><title>Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmholtz's equation. An algorithm to obtain the S-matrix by the equivalent circuit method is presented. The relativistic Boris method is applied to accelerate macroparticles. The exchanged power is computed by the work the electromagnetic field applied to the macroparticles. The theoretical model is applied for validation to a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{G} &lt;/tex-math&gt;&lt;/inline-formula&gt;-band staggered double vane TWT and validated in comparison with CST Particle Studio and simulations without losses and reflections. The convergence of this algorithm is also discussed. The simulation time of the model is substantial faster than 3-D particle-in-cell (PIC) simulations.</description><subject>Algorithms</subject><subject>Beam-wave interaction</subject><subject>Blades</subject><subject>Electromagnetic fields</subject><subject>Equivalent circuits</subject><subject>Harmonic analysis</subject><subject>Integrated circuit modeling</subject><subject>losses</subject><subject>Macroparticles</subject><subject>Magnetic circuits</subject><subject>Metals</subject><subject>Particle in cell technique</subject><subject>reflections</subject><subject>sheet beam traveling wave tube (TWT)</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>Space charge</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>Wave interaction</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrztzkjRtL3VOHUwGWtllSNNT17G2M-kG_nuzD7w6HHje53BeQm6BjQBY9pBPnkeccRgJlgAHfkYGEMdJlCmpzsmAMUijTKTiklx5vwqrkpIPSDNtNq7bYUnfuxLXtOocfULTRAuzQzpte3TG9nXX0kXdL-l82dSWzjrv0VPTlvQDqzUeAE-7in4uEfuDgOYuGNZ1-00PqnxboL8mF5VZe7w5zSH5epnk47doNn-djh9nkRVC9BHIgmeGx8LK0iqUCYhKMDCqsirNMClUHEtMVGwgq4RMRGGZioUwnDOZciWG5P7oDb_9bNH3etVtXRtO6mBlAEJKCBQ7UtaFhxxWeuPqxrhfDUzvS9WhVL0vVZ9KDZG7Y6RGxH88kyyWCsQf-jhw-g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Tian, Hanwen</creator><creator>Shi, Ningjie</creator><creator>Wang, Zhanliang</creator><creator>Wang, Shaomeng</creator><creator>Duan, Zhaoyun</creator><creator>Gong, Huarong</creator><creator>Lu, Zhigang</creator><creator>Paoloni, Claudio</creator><creator>Feng, Jinjun</creator><creator>Gong, Yubin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8413-1048</orcidid><orcidid>https://orcid.org/0000-0002-2179-5223</orcidid><orcidid>https://orcid.org/0000-0002-1350-5329</orcidid><orcidid>https://orcid.org/0000-0002-9474-8604</orcidid><orcidid>https://orcid.org/0000-0002-0265-0862</orcidid><orcidid>https://orcid.org/0000-0002-2708-9418</orcidid><orcidid>https://orcid.org/0000-0001-6431-0559</orcidid><orcidid>https://orcid.org/0000-0001-7438-5845</orcidid><orcidid>https://orcid.org/0000-0002-9559-1266</orcidid><orcidid>https://orcid.org/0000-0003-3014-1309</orcidid></search><sort><creationdate>20210601</creationdate><title>Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes</title><author>Tian, Hanwen ; Shi, Ningjie ; Wang, Zhanliang ; Wang, Shaomeng ; Duan, Zhaoyun ; Gong, Huarong ; Lu, Zhigang ; Paoloni, Claudio ; Feng, Jinjun ; Gong, Yubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-14b29a253c4dc6e4713f301a6fc689e7b6554e765a19f3473bc06533a22048263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Beam-wave interaction</topic><topic>Blades</topic><topic>Electromagnetic fields</topic><topic>Equivalent circuits</topic><topic>Harmonic analysis</topic><topic>Integrated circuit modeling</topic><topic>losses</topic><topic>Macroparticles</topic><topic>Magnetic circuits</topic><topic>Metals</topic><topic>Particle in cell technique</topic><topic>reflections</topic><topic>sheet beam traveling wave tube (TWT)</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>Space charge</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Hanwen</creatorcontrib><creatorcontrib>Shi, Ningjie</creatorcontrib><creatorcontrib>Wang, Zhanliang</creatorcontrib><creatorcontrib>Wang, Shaomeng</creatorcontrib><creatorcontrib>Duan, Zhaoyun</creatorcontrib><creatorcontrib>Gong, Huarong</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Paoloni, Claudio</creatorcontrib><creatorcontrib>Feng, Jinjun</creatorcontrib><creatorcontrib>Gong, Yubin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Hanwen</au><au>Shi, Ningjie</au><au>Wang, Zhanliang</au><au>Wang, Shaomeng</au><au>Duan, Zhaoyun</au><au>Gong, Huarong</au><au>Lu, Zhigang</au><au>Paoloni, Claudio</au><au>Feng, Jinjun</au><au>Gong, Yubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>2977</spage><epage>2983</epage><pages>2977-2983</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, an improved model for the beam-wave interaction of sheet beam in traveling wave tubes (TWTs) considering ohmic losses and reflections is presented. The ohmic losses are obtained by field analysis and equivalent method. The space charge magnetic field is derived from the active Helmholtz's equation. An algorithm to obtain the S-matrix by the equivalent circuit method is presented. The relativistic Boris method is applied to accelerate macroparticles. The exchanged power is computed by the work the electromagnetic field applied to the macroparticles. The theoretical model is applied for validation to a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{G} &lt;/tex-math&gt;&lt;/inline-formula&gt;-band staggered double vane TWT and validated in comparison with CST Particle Studio and simulations without losses and reflections. The convergence of this algorithm is also discussed. The simulation time of the model is substantial faster than 3-D particle-in-cell (PIC) simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3071212</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8413-1048</orcidid><orcidid>https://orcid.org/0000-0002-2179-5223</orcidid><orcidid>https://orcid.org/0000-0002-1350-5329</orcidid><orcidid>https://orcid.org/0000-0002-9474-8604</orcidid><orcidid>https://orcid.org/0000-0002-0265-0862</orcidid><orcidid>https://orcid.org/0000-0002-2708-9418</orcidid><orcidid>https://orcid.org/0000-0001-6431-0559</orcidid><orcidid>https://orcid.org/0000-0001-7438-5845</orcidid><orcidid>https://orcid.org/0000-0002-9559-1266</orcidid><orcidid>https://orcid.org/0000-0003-3014-1309</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2977-2983
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2021_3071212
source IEEE Electronic Library (IEL)
subjects Algorithms
Beam-wave interaction
Blades
Electromagnetic fields
Equivalent circuits
Harmonic analysis
Integrated circuit modeling
losses
Macroparticles
Magnetic circuits
Metals
Particle in cell technique
reflections
sheet beam traveling wave tube (TWT)
Simulation
Solid modeling
Space charge
Traveling wave tubes
Traveling waves
Wave interaction
title Improved Model for Beam-Wave Interaction With Ohmic Losses and Reflections of Sheet Beam Traveling Wave Tubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Model%20for%20Beam-Wave%20Interaction%20With%20Ohmic%20Losses%20and%20Reflections%20of%20Sheet%20Beam%20Traveling%20Wave%20Tubes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Tian,%20Hanwen&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=2977&rft.epage=2983&rft.pages=2977-2983&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3071212&rft_dat=%3Cproquest_RIE%3E2530113441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530113441&rft_id=info:pmid/&rft_ieee_id=9405461&rfr_iscdi=true