Analytical Design and Experimental Verification of Lateral Superjunction Based on Global Region Normalization Method

The global region normalization (GRN) method is proposed to optimize the lateral superjunction (SJ), in this article. The GRN features normalizations in the global doping range of the SJ from zero to the maximum doping concentration {N}_{\text {max}} that was theoretically determined by the pillar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-05, Vol.68 (5), p.2372-2377
Hauptverfasser: Zhang, Wentong, Yang, Kun, Zhu, Xuhan, Zhang, Sen, He, Boyong, Wang, Zhuo, Qiao, Ming, Li, Zhaoji, Zhang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2377
container_issue 5
container_start_page 2372
container_title IEEE transactions on electron devices
container_volume 68
creator Zhang, Wentong
Yang, Kun
Zhu, Xuhan
Zhang, Sen
He, Boyong
Wang, Zhuo
Qiao, Ming
Li, Zhaoji
Zhang, Bo
description The global region normalization (GRN) method is proposed to optimize the lateral superjunction (SJ), in this article. The GRN features normalizations in the global doping range of the SJ from zero to the maximum doping concentration {N}_{\text {max}} that was theoretically determined by the pillar width {W}_{\text {SJ}} . Then the optimization covers all the possible design points of the SJ. For the SJ with given {W}_{\text {SJ}} and pillar length {L}_{\text {SJ}} , the specific ON-resistance {R}_{\text {on,sp}} and breakdown voltage {V}_{\text {B}} are normalized in the global region of the doping concentra- tion {N}_{\text {SJ}} . With the GRN method, the global normalization function {f}_{\eta } is deduced to reflect the quantitative variation trend of {R}_{\text {on,sp}} - {V}_{\text {B}} and a design formula of the optimized {N}_{\text {SJ}} is presented. Furthermore, lateral SJ devices were fabricated according to the formula. The measured {R}_{\text {on,sp}} values of the SJ devices are reduced by almost 35% when compared with the theoretical limit of the triple RESURF device in a voltage range of 100-400 V. The experiments also reveal that the measured net {R}_{\text {on,sp}} of the SJ region approaches the {R}_{\text {on.sp}} \propto {V}_{\text {B}}^{{1.03}} relationship.
doi_str_mv 10.1109/TED.2021.3066561
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3066561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9387142</ieee_id><sourcerecordid>2517034575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e8aa14d0ca76bf6fd247b6985c69da89a5473ab3d7f0354d1275934e6e1b67873</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC5635zuZYa61CVdDqNWQ32bplu6lJFqx_vaktnmbmze8NzAPgEsERQlDeLKZ3IwwxGhHIOePoCAwQYyKXnPJjMIAQFbkkBTkFZyGs0sgpxQMQx51ut7GpdJvd2dAsu0x3Jpt-b6xv1raLSf9IbZ2I2Lguc3U219H6pL_1CVr1XfW3uNXBmiw1s9aVaftqlzv52fm1bpufvfvJxk9nzsFJrdtgLw51CN7vp4vJQz5_mT1OxvO8whLF3BZaI2pgpQUva14bTEXJZcEqLo0upGZUEF0SI2pIGDUICyYJtdyikotCkCG43t_dePfV2xDVyvU-PRwUZkhAQplgiYJ7qvIuBG9rtUmva79VCKpdtiplq3bZqkO2yXK1tzTW2n88xSsQxeQXAhB2OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517034575</pqid></control><display><type>article</type><title>Analytical Design and Experimental Verification of Lateral Superjunction Based on Global Region Normalization Method</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wentong ; Yang, Kun ; Zhu, Xuhan ; Zhang, Sen ; He, Boyong ; Wang, Zhuo ; Qiao, Ming ; Li, Zhaoji ; Zhang, Bo</creator><creatorcontrib>Zhang, Wentong ; Yang, Kun ; Zhu, Xuhan ; Zhang, Sen ; He, Boyong ; Wang, Zhuo ; Qiao, Ming ; Li, Zhaoji ; Zhang, Bo</creatorcontrib><description><![CDATA[The global region normalization (GRN) method is proposed to optimize the lateral superjunction (SJ), in this article. The GRN features normalizations in the global doping range of the SJ from zero to the maximum doping concentration <inline-formula> <tex-math notation="LaTeX">{N}_{\text {max}} </tex-math></inline-formula> that was theoretically determined by the pillar width <inline-formula> <tex-math notation="LaTeX">{W}_{\text {SJ}} </tex-math></inline-formula>. Then the optimization covers all the possible design points of the SJ. For the SJ with given <inline-formula> <tex-math notation="LaTeX">{W}_{\text {SJ}} </tex-math></inline-formula> and pillar length <inline-formula> <tex-math notation="LaTeX">{L}_{\text {SJ}} </tex-math></inline-formula>, the specific ON-resistance <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> and breakdown voltage <inline-formula> <tex-math notation="LaTeX">{V}_{\text {B}} </tex-math></inline-formula> are normalized in the global region of the doping concentra- tion <inline-formula> <tex-math notation="LaTeX">{N}_{\text {SJ}} </tex-math></inline-formula>. With the GRN method, the global normalization function <inline-formula> <tex-math notation="LaTeX">{f}_{\eta } </tex-math></inline-formula> is deduced to reflect the quantitative variation trend of <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {B}} </tex-math></inline-formula> and a design formula of the optimized <inline-formula> <tex-math notation="LaTeX">{N}_{\text {SJ}} </tex-math></inline-formula> is presented. Furthermore, lateral SJ devices were fabricated according to the formula. The measured <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> values of the SJ devices are reduced by almost 35% when compared with the theoretical limit of the triple RESURF device in a voltage range of 100-400 V. The experiments also reveal that the measured net <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> of the SJ region approaches the <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on.sp}} \propto {V}_{\text {B}}^{{1.03}} </tex-math></inline-formula> relationship.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3066561</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Breakdown voltage V B ; Design optimization ; Doping ; Electric potential ; experiments ; Mathematical model ; Micrometers ; normalization method ; Optimization ; Resistance ; sp ; specific on-resistance R on ; Substrates ; superjunction (SJ) ; Voltage ; Voltage measurement</subject><ispartof>IEEE transactions on electron devices, 2021-05, Vol.68 (5), p.2372-2377</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e8aa14d0ca76bf6fd247b6985c69da89a5473ab3d7f0354d1275934e6e1b67873</citedby><cites>FETCH-LOGICAL-c291t-e8aa14d0ca76bf6fd247b6985c69da89a5473ab3d7f0354d1275934e6e1b67873</cites><orcidid>0000-0001-6325-9878 ; 0000-0002-8119-5000 ; 0000-0001-5591-9549 ; 0000-0001-9221-3318 ; 0000-0003-1288-1549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9387142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9387142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wentong</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Zhu, Xuhan</creatorcontrib><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>He, Boyong</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Qiao, Ming</creatorcontrib><creatorcontrib>Li, Zhaoji</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><title>Analytical Design and Experimental Verification of Lateral Superjunction Based on Global Region Normalization Method</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[The global region normalization (GRN) method is proposed to optimize the lateral superjunction (SJ), in this article. The GRN features normalizations in the global doping range of the SJ from zero to the maximum doping concentration <inline-formula> <tex-math notation="LaTeX">{N}_{\text {max}} </tex-math></inline-formula> that was theoretically determined by the pillar width <inline-formula> <tex-math notation="LaTeX">{W}_{\text {SJ}} </tex-math></inline-formula>. Then the optimization covers all the possible design points of the SJ. For the SJ with given <inline-formula> <tex-math notation="LaTeX">{W}_{\text {SJ}} </tex-math></inline-formula> and pillar length <inline-formula> <tex-math notation="LaTeX">{L}_{\text {SJ}} </tex-math></inline-formula>, the specific ON-resistance <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> and breakdown voltage <inline-formula> <tex-math notation="LaTeX">{V}_{\text {B}} </tex-math></inline-formula> are normalized in the global region of the doping concentra- tion <inline-formula> <tex-math notation="LaTeX">{N}_{\text {SJ}} </tex-math></inline-formula>. With the GRN method, the global normalization function <inline-formula> <tex-math notation="LaTeX">{f}_{\eta } </tex-math></inline-formula> is deduced to reflect the quantitative variation trend of <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {B}} </tex-math></inline-formula> and a design formula of the optimized <inline-formula> <tex-math notation="LaTeX">{N}_{\text {SJ}} </tex-math></inline-formula> is presented. Furthermore, lateral SJ devices were fabricated according to the formula. The measured <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> values of the SJ devices are reduced by almost 35% when compared with the theoretical limit of the triple RESURF device in a voltage range of 100-400 V. The experiments also reveal that the measured net <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> of the SJ region approaches the <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on.sp}} \propto {V}_{\text {B}}^{{1.03}} </tex-math></inline-formula> relationship.]]></description><subject>Breakdown voltage V B</subject><subject>Design optimization</subject><subject>Doping</subject><subject>Electric potential</subject><subject>experiments</subject><subject>Mathematical model</subject><subject>Micrometers</subject><subject>normalization method</subject><subject>Optimization</subject><subject>Resistance</subject><subject>sp</subject><subject>specific on-resistance R on</subject><subject>Substrates</subject><subject>superjunction (SJ)</subject><subject>Voltage</subject><subject>Voltage measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC5635zuZYa61CVdDqNWQ32bplu6lJFqx_vaktnmbmze8NzAPgEsERQlDeLKZ3IwwxGhHIOePoCAwQYyKXnPJjMIAQFbkkBTkFZyGs0sgpxQMQx51ut7GpdJvd2dAsu0x3Jpt-b6xv1raLSf9IbZ2I2Lguc3U219H6pL_1CVr1XfW3uNXBmiw1s9aVaftqlzv52fm1bpufvfvJxk9nzsFJrdtgLw51CN7vp4vJQz5_mT1OxvO8whLF3BZaI2pgpQUva14bTEXJZcEqLo0upGZUEF0SI2pIGDUICyYJtdyikotCkCG43t_dePfV2xDVyvU-PRwUZkhAQplgiYJ7qvIuBG9rtUmva79VCKpdtiplq3bZqkO2yXK1tzTW2n88xSsQxeQXAhB2OQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zhang, Wentong</creator><creator>Yang, Kun</creator><creator>Zhu, Xuhan</creator><creator>Zhang, Sen</creator><creator>He, Boyong</creator><creator>Wang, Zhuo</creator><creator>Qiao, Ming</creator><creator>Li, Zhaoji</creator><creator>Zhang, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6325-9878</orcidid><orcidid>https://orcid.org/0000-0002-8119-5000</orcidid><orcidid>https://orcid.org/0000-0001-5591-9549</orcidid><orcidid>https://orcid.org/0000-0001-9221-3318</orcidid><orcidid>https://orcid.org/0000-0003-1288-1549</orcidid></search><sort><creationdate>20210501</creationdate><title>Analytical Design and Experimental Verification of Lateral Superjunction Based on Global Region Normalization Method</title><author>Zhang, Wentong ; Yang, Kun ; Zhu, Xuhan ; Zhang, Sen ; He, Boyong ; Wang, Zhuo ; Qiao, Ming ; Li, Zhaoji ; Zhang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e8aa14d0ca76bf6fd247b6985c69da89a5473ab3d7f0354d1275934e6e1b67873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breakdown voltage V B</topic><topic>Design optimization</topic><topic>Doping</topic><topic>Electric potential</topic><topic>experiments</topic><topic>Mathematical model</topic><topic>Micrometers</topic><topic>normalization method</topic><topic>Optimization</topic><topic>Resistance</topic><topic>sp</topic><topic>specific on-resistance R on</topic><topic>Substrates</topic><topic>superjunction (SJ)</topic><topic>Voltage</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wentong</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Zhu, Xuhan</creatorcontrib><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>He, Boyong</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Qiao, Ming</creatorcontrib><creatorcontrib>Li, Zhaoji</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wentong</au><au>Yang, Kun</au><au>Zhu, Xuhan</au><au>Zhang, Sen</au><au>He, Boyong</au><au>Wang, Zhuo</au><au>Qiao, Ming</au><au>Li, Zhaoji</au><au>Zhang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Design and Experimental Verification of Lateral Superjunction Based on Global Region Normalization Method</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>2372</spage><epage>2377</epage><pages>2372-2377</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[The global region normalization (GRN) method is proposed to optimize the lateral superjunction (SJ), in this article. The GRN features normalizations in the global doping range of the SJ from zero to the maximum doping concentration <inline-formula> <tex-math notation="LaTeX">{N}_{\text {max}} </tex-math></inline-formula> that was theoretically determined by the pillar width <inline-formula> <tex-math notation="LaTeX">{W}_{\text {SJ}} </tex-math></inline-formula>. Then the optimization covers all the possible design points of the SJ. For the SJ with given <inline-formula> <tex-math notation="LaTeX">{W}_{\text {SJ}} </tex-math></inline-formula> and pillar length <inline-formula> <tex-math notation="LaTeX">{L}_{\text {SJ}} </tex-math></inline-formula>, the specific ON-resistance <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> and breakdown voltage <inline-formula> <tex-math notation="LaTeX">{V}_{\text {B}} </tex-math></inline-formula> are normalized in the global region of the doping concentra- tion <inline-formula> <tex-math notation="LaTeX">{N}_{\text {SJ}} </tex-math></inline-formula>. With the GRN method, the global normalization function <inline-formula> <tex-math notation="LaTeX">{f}_{\eta } </tex-math></inline-formula> is deduced to reflect the quantitative variation trend of <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V}_{\text {B}} </tex-math></inline-formula> and a design formula of the optimized <inline-formula> <tex-math notation="LaTeX">{N}_{\text {SJ}} </tex-math></inline-formula> is presented. Furthermore, lateral SJ devices were fabricated according to the formula. The measured <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> values of the SJ devices are reduced by almost 35% when compared with the theoretical limit of the triple RESURF device in a voltage range of 100-400 V. The experiments also reveal that the measured net <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on,sp}} </tex-math></inline-formula> of the SJ region approaches the <inline-formula> <tex-math notation="LaTeX">{R}_{\text {on.sp}} \propto {V}_{\text {B}}^{{1.03}} </tex-math></inline-formula> relationship.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3066561</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6325-9878</orcidid><orcidid>https://orcid.org/0000-0002-8119-5000</orcidid><orcidid>https://orcid.org/0000-0001-5591-9549</orcidid><orcidid>https://orcid.org/0000-0001-9221-3318</orcidid><orcidid>https://orcid.org/0000-0003-1288-1549</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-05, Vol.68 (5), p.2372-2377
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2021_3066561
source IEEE Electronic Library (IEL)
subjects Breakdown voltage V B
Design optimization
Doping
Electric potential
experiments
Mathematical model
Micrometers
normalization method
Optimization
Resistance
sp
specific on-resistance R on
Substrates
superjunction (SJ)
Voltage
Voltage measurement
title Analytical Design and Experimental Verification of Lateral Superjunction Based on Global Region Normalization Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Design%20and%20Experimental%20Verification%20of%20Lateral%20Superjunction%20Based%20on%20Global%20Region%20Normalization%20Method&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zhang,%20Wentong&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=2372&rft.epage=2377&rft.pages=2372-2377&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3066561&rft_dat=%3Cproquest_RIE%3E2517034575%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517034575&rft_id=info:pmid/&rft_ieee_id=9387142&rfr_iscdi=true