Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell

With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-07, Vol.67 (7), p.2837-2843
Hauptverfasser: Shubham, Raghvendra, Pathak, Chetan, Pandey, Saurabh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2843
container_issue 7
container_start_page 2837
container_title IEEE transactions on electron devices
container_volume 67
creator Shubham
Raghvendra
Pathak, Chetan
Pandey, Saurabh Kumar
description With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies and factors such as defect density, characteristic decay energies, and capture cross section area have investigated using device simulation software. The defects in absorber layer are modeled by using exponentially decaying band tails for shallow-level defects and Gaussian distribution for the deep-level defects. By optimizing the device parameters, we have achieved a simulated conversion efficiency of 13.35% with open-circuit voltage ( {V}_{oc} ) = 0.89 V, short circuit current density ( {J}_{sc} ) = 22.79 mA/cm 2 , and a fill factor (FF) = 65.28% under AM1.5G illumination. We have also studied the impact of absorber layer thickness and interface defect density on the performance of the solar cell. These simulation results can aid researchers in a reasonable choice of materials and optimally design high-performance PSC.
doi_str_mv 10.1109/TED.2020.2996570
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2020_2996570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9108564</ieee_id><sourcerecordid>2415962916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-3429ce2bd98cc70655d65283d8630c3c3780120aaae8f281ede90c8d4d480d223</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt3wUvAa7fmYzebHEu7VaGgYD3HmLxI6na3Jlth_3u3tHiaeTAzPH4I3VIypZSoh3W1mDLCyJQpJYqSnKERLYoyUyIX52hECJWZ4pJfoquUNsMp8pyN0McCUvhqJvgVom_j1jQWJtg0Di_Ag-0GaVLoejxrTN2nkHDrceV9sAGaDle2zZZxsK7uDxPtb_oOHeC3tjYRz6Gur9GFN3WCm5OO0fuyWs-fstXL4_N8tsosK1mX8ZwpC-zTKWltSURROFEwyZ0UnFhueSkJZcQYA9IzScGBIla63OWSOMb4GN0fd3ex_dlD6vSm3cfh6aRZTgslmKJiSJFjysY2pQhe72LYmthrSvSBox446gNHfeI4VO6OlQAA_3FFiSxEzv8A5vdtXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415962916</pqid></control><display><type>article</type><title>Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell</title><source>IEEE Electronic Library (IEL)</source><creator>Shubham ; Raghvendra ; Pathak, Chetan ; Pandey, Saurabh Kumar</creator><creatorcontrib>Shubham ; Raghvendra ; Pathak, Chetan ; Pandey, Saurabh Kumar</creatorcontrib><description><![CDATA[With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies and factors such as defect density, characteristic decay energies, and capture cross section area have investigated using device simulation software. The defects in absorber layer are modeled by using exponentially decaying band tails for shallow-level defects and Gaussian distribution for the deep-level defects. By optimizing the device parameters, we have achieved a simulated conversion efficiency of 13.35% with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{oc} </tex-math></inline-formula>) = 0.89 V, short circuit current density (<inline-formula> <tex-math notation="LaTeX">{J}_{sc} </tex-math></inline-formula>) = 22.79 mA/cm 2 , and a fill factor (FF) = 65.28% under AM1.5G illumination. We have also studied the impact of absorber layer thickness and interface defect density on the performance of the solar cell. These simulation results can aid researchers in a reasonable choice of materials and optimally design high-performance PSC.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.2996570</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorbers ; Absorption cross sections ; Characteristic decay energies ; Circuits ; Computer simulation ; defect ; Defects ; Design analysis ; Design defects ; Design factors ; Design parameters ; Gaussian distribution ; Germanium ; Lead ; Lead free ; Materials selection ; methylammonium germanium tri-iodide (MAGeI₃) ; Normal distribution ; Numerical stability ; Open circuit voltage ; Optimization ; Performance evaluation ; perovskite ; Perovskites ; Photonic band gap ; Photovoltaic cells ; recombination ; Short circuit currents ; Solar cells ; Thickness ; Tin</subject><ispartof>IEEE transactions on electron devices, 2020-07, Vol.67 (7), p.2837-2843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-3429ce2bd98cc70655d65283d8630c3c3780120aaae8f281ede90c8d4d480d223</citedby><cites>FETCH-LOGICAL-c272t-3429ce2bd98cc70655d65283d8630c3c3780120aaae8f281ede90c8d4d480d223</cites><orcidid>0000-0002-6717-1803 ; 0000-0003-4684-4762 ; 0000-0001-6228-8968 ; 0000-0002-5013-6745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9108564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9108564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shubham</creatorcontrib><creatorcontrib>Raghvendra</creatorcontrib><creatorcontrib>Pathak, Chetan</creatorcontrib><creatorcontrib>Pandey, Saurabh Kumar</creatorcontrib><title>Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies and factors such as defect density, characteristic decay energies, and capture cross section area have investigated using device simulation software. The defects in absorber layer are modeled by using exponentially decaying band tails for shallow-level defects and Gaussian distribution for the deep-level defects. By optimizing the device parameters, we have achieved a simulated conversion efficiency of 13.35% with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{oc} </tex-math></inline-formula>) = 0.89 V, short circuit current density (<inline-formula> <tex-math notation="LaTeX">{J}_{sc} </tex-math></inline-formula>) = 22.79 mA/cm 2 , and a fill factor (FF) = 65.28% under AM1.5G illumination. We have also studied the impact of absorber layer thickness and interface defect density on the performance of the solar cell. These simulation results can aid researchers in a reasonable choice of materials and optimally design high-performance PSC.]]></description><subject>Absorbers</subject><subject>Absorption cross sections</subject><subject>Characteristic decay energies</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>defect</subject><subject>Defects</subject><subject>Design analysis</subject><subject>Design defects</subject><subject>Design factors</subject><subject>Design parameters</subject><subject>Gaussian distribution</subject><subject>Germanium</subject><subject>Lead</subject><subject>Lead free</subject><subject>Materials selection</subject><subject>methylammonium germanium tri-iodide (MAGeI₃)</subject><subject>Normal distribution</subject><subject>Numerical stability</subject><subject>Open circuit voltage</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>perovskite</subject><subject>Perovskites</subject><subject>Photonic band gap</subject><subject>Photovoltaic cells</subject><subject>recombination</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Tin</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEUxIMoWKt3wUvAa7fmYzebHEu7VaGgYD3HmLxI6na3Jlth_3u3tHiaeTAzPH4I3VIypZSoh3W1mDLCyJQpJYqSnKERLYoyUyIX52hECJWZ4pJfoquUNsMp8pyN0McCUvhqJvgVom_j1jQWJtg0Di_Ag-0GaVLoejxrTN2nkHDrceV9sAGaDle2zZZxsK7uDxPtb_oOHeC3tjYRz6Gur9GFN3WCm5OO0fuyWs-fstXL4_N8tsosK1mX8ZwpC-zTKWltSURROFEwyZ0UnFhueSkJZcQYA9IzScGBIla63OWSOMb4GN0fd3ex_dlD6vSm3cfh6aRZTgslmKJiSJFjysY2pQhe72LYmthrSvSBox446gNHfeI4VO6OlQAA_3FFiSxEzv8A5vdtXA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Shubham</creator><creator>Raghvendra</creator><creator>Pathak, Chetan</creator><creator>Pandey, Saurabh Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6717-1803</orcidid><orcidid>https://orcid.org/0000-0003-4684-4762</orcidid><orcidid>https://orcid.org/0000-0001-6228-8968</orcidid><orcidid>https://orcid.org/0000-0002-5013-6745</orcidid></search><sort><creationdate>20200701</creationdate><title>Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell</title><author>Shubham ; Raghvendra ; Pathak, Chetan ; Pandey, Saurabh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-3429ce2bd98cc70655d65283d8630c3c3780120aaae8f281ede90c8d4d480d223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Absorption cross sections</topic><topic>Characteristic decay energies</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>defect</topic><topic>Defects</topic><topic>Design analysis</topic><topic>Design defects</topic><topic>Design factors</topic><topic>Design parameters</topic><topic>Gaussian distribution</topic><topic>Germanium</topic><topic>Lead</topic><topic>Lead free</topic><topic>Materials selection</topic><topic>methylammonium germanium tri-iodide (MAGeI₃)</topic><topic>Normal distribution</topic><topic>Numerical stability</topic><topic>Open circuit voltage</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>perovskite</topic><topic>Perovskites</topic><topic>Photonic band gap</topic><topic>Photovoltaic cells</topic><topic>recombination</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shubham</creatorcontrib><creatorcontrib>Raghvendra</creatorcontrib><creatorcontrib>Pathak, Chetan</creatorcontrib><creatorcontrib>Pandey, Saurabh Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shubham</au><au>Raghvendra</au><au>Pathak, Chetan</au><au>Pandey, Saurabh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>67</volume><issue>7</issue><spage>2837</spage><epage>2843</epage><pages>2837-2843</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies and factors such as defect density, characteristic decay energies, and capture cross section area have investigated using device simulation software. The defects in absorber layer are modeled by using exponentially decaying band tails for shallow-level defects and Gaussian distribution for the deep-level defects. By optimizing the device parameters, we have achieved a simulated conversion efficiency of 13.35% with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{oc} </tex-math></inline-formula>) = 0.89 V, short circuit current density (<inline-formula> <tex-math notation="LaTeX">{J}_{sc} </tex-math></inline-formula>) = 22.79 mA/cm 2 , and a fill factor (FF) = 65.28% under AM1.5G illumination. We have also studied the impact of absorber layer thickness and interface defect density on the performance of the solar cell. These simulation results can aid researchers in a reasonable choice of materials and optimally design high-performance PSC.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.2996570</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6717-1803</orcidid><orcidid>https://orcid.org/0000-0003-4684-4762</orcidid><orcidid>https://orcid.org/0000-0001-6228-8968</orcidid><orcidid>https://orcid.org/0000-0002-5013-6745</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-07, Vol.67 (7), p.2837-2843
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2020_2996570
source IEEE Electronic Library (IEL)
subjects Absorbers
Absorption cross sections
Characteristic decay energies
Circuits
Computer simulation
defect
Defects
Design analysis
Design defects
Design factors
Design parameters
Gaussian distribution
Germanium
Lead
Lead free
Materials selection
methylammonium germanium tri-iodide (MAGeI₃)
Normal distribution
Numerical stability
Open circuit voltage
Optimization
Performance evaluation
perovskite
Perovskites
Photonic band gap
Photovoltaic cells
recombination
Short circuit currents
Solar cells
Thickness
Tin
title Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Performance,%20and%20Defect%20Density%20Analysis%20of%20Efficient%20Eco-Friendly%20Perovskite%20Solar%20Cell&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shubham&rft.date=2020-07-01&rft.volume=67&rft.issue=7&rft.spage=2837&rft.epage=2843&rft.pages=2837-2843&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.2996570&rft_dat=%3Cproquest_RIE%3E2415962916%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415962916&rft_id=info:pmid/&rft_ieee_id=9108564&rfr_iscdi=true