Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell
With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2020-07, Vol.67 (7), p.2837-2843 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2843 |
---|---|
container_issue | 7 |
container_start_page | 2837 |
container_title | IEEE transactions on electron devices |
container_volume | 67 |
creator | Shubham Raghvendra Pathak, Chetan Pandey, Saurabh Kumar |
description | With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies and factors such as defect density, characteristic decay energies, and capture cross section area have investigated using device simulation software. The defects in absorber layer are modeled by using exponentially decaying band tails for shallow-level defects and Gaussian distribution for the deep-level defects. By optimizing the device parameters, we have achieved a simulated conversion efficiency of 13.35% with open-circuit voltage ( {V}_{oc} ) = 0.89 V, short circuit current density ( {J}_{sc} ) = 22.79 mA/cm 2 , and a fill factor (FF) = 65.28% under AM1.5G illumination. We have also studied the impact of absorber layer thickness and interface defect density on the performance of the solar cell. These simulation results can aid researchers in a reasonable choice of materials and optimally design high-performance PSC. |
doi_str_mv | 10.1109/TED.2020.2996570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2020_2996570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9108564</ieee_id><sourcerecordid>2415962916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-3429ce2bd98cc70655d65283d8630c3c3780120aaae8f281ede90c8d4d480d223</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt3wUvAa7fmYzebHEu7VaGgYD3HmLxI6na3Jlth_3u3tHiaeTAzPH4I3VIypZSoh3W1mDLCyJQpJYqSnKERLYoyUyIX52hECJWZ4pJfoquUNsMp8pyN0McCUvhqJvgVom_j1jQWJtg0Di_Ag-0GaVLoejxrTN2nkHDrceV9sAGaDle2zZZxsK7uDxPtb_oOHeC3tjYRz6Gur9GFN3WCm5OO0fuyWs-fstXL4_N8tsosK1mX8ZwpC-zTKWltSURROFEwyZ0UnFhueSkJZcQYA9IzScGBIla63OWSOMb4GN0fd3ex_dlD6vSm3cfh6aRZTgslmKJiSJFjysY2pQhe72LYmthrSvSBox446gNHfeI4VO6OlQAA_3FFiSxEzv8A5vdtXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415962916</pqid></control><display><type>article</type><title>Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell</title><source>IEEE Electronic Library (IEL)</source><creator>Shubham ; Raghvendra ; Pathak, Chetan ; Pandey, Saurabh Kumar</creator><creatorcontrib>Shubham ; Raghvendra ; Pathak, Chetan ; Pandey, Saurabh Kumar</creatorcontrib><description><![CDATA[With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies and factors such as defect density, characteristic decay energies, and capture cross section area have investigated using device simulation software. The defects in absorber layer are modeled by using exponentially decaying band tails for shallow-level defects and Gaussian distribution for the deep-level defects. By optimizing the device parameters, we have achieved a simulated conversion efficiency of 13.35% with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{oc} </tex-math></inline-formula>) = 0.89 V, short circuit current density (<inline-formula> <tex-math notation="LaTeX">{J}_{sc} </tex-math></inline-formula>) = 22.79 mA/cm 2 , and a fill factor (FF) = 65.28% under AM1.5G illumination. We have also studied the impact of absorber layer thickness and interface defect density on the performance of the solar cell. These simulation results can aid researchers in a reasonable choice of materials and optimally design high-performance PSC.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.2996570</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorbers ; Absorption cross sections ; Characteristic decay energies ; Circuits ; Computer simulation ; defect ; Defects ; Design analysis ; Design defects ; Design factors ; Design parameters ; Gaussian distribution ; Germanium ; Lead ; Lead free ; Materials selection ; methylammonium germanium tri-iodide (MAGeI₃) ; Normal distribution ; Numerical stability ; Open circuit voltage ; Optimization ; Performance evaluation ; perovskite ; Perovskites ; Photonic band gap ; Photovoltaic cells ; recombination ; Short circuit currents ; Solar cells ; Thickness ; Tin</subject><ispartof>IEEE transactions on electron devices, 2020-07, Vol.67 (7), p.2837-2843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-3429ce2bd98cc70655d65283d8630c3c3780120aaae8f281ede90c8d4d480d223</citedby><cites>FETCH-LOGICAL-c272t-3429ce2bd98cc70655d65283d8630c3c3780120aaae8f281ede90c8d4d480d223</cites><orcidid>0000-0002-6717-1803 ; 0000-0003-4684-4762 ; 0000-0001-6228-8968 ; 0000-0002-5013-6745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9108564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9108564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shubham</creatorcontrib><creatorcontrib>Raghvendra</creatorcontrib><creatorcontrib>Pathak, Chetan</creatorcontrib><creatorcontrib>Pandey, Saurabh Kumar</creatorcontrib><title>Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies and factors such as defect density, characteristic decay energies, and capture cross section area have investigated using device simulation software. The defects in absorber layer are modeled by using exponentially decaying band tails for shallow-level defects and Gaussian distribution for the deep-level defects. By optimizing the device parameters, we have achieved a simulated conversion efficiency of 13.35% with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{oc} </tex-math></inline-formula>) = 0.89 V, short circuit current density (<inline-formula> <tex-math notation="LaTeX">{J}_{sc} </tex-math></inline-formula>) = 22.79 mA/cm 2 , and a fill factor (FF) = 65.28% under AM1.5G illumination. We have also studied the impact of absorber layer thickness and interface defect density on the performance of the solar cell. These simulation results can aid researchers in a reasonable choice of materials and optimally design high-performance PSC.]]></description><subject>Absorbers</subject><subject>Absorption cross sections</subject><subject>Characteristic decay energies</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>defect</subject><subject>Defects</subject><subject>Design analysis</subject><subject>Design defects</subject><subject>Design factors</subject><subject>Design parameters</subject><subject>Gaussian distribution</subject><subject>Germanium</subject><subject>Lead</subject><subject>Lead free</subject><subject>Materials selection</subject><subject>methylammonium germanium tri-iodide (MAGeI₃)</subject><subject>Normal distribution</subject><subject>Numerical stability</subject><subject>Open circuit voltage</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>perovskite</subject><subject>Perovskites</subject><subject>Photonic band gap</subject><subject>Photovoltaic cells</subject><subject>recombination</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Tin</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEUxIMoWKt3wUvAa7fmYzebHEu7VaGgYD3HmLxI6na3Jlth_3u3tHiaeTAzPH4I3VIypZSoh3W1mDLCyJQpJYqSnKERLYoyUyIX52hECJWZ4pJfoquUNsMp8pyN0McCUvhqJvgVom_j1jQWJtg0Di_Ag-0GaVLoejxrTN2nkHDrceV9sAGaDle2zZZxsK7uDxPtb_oOHeC3tjYRz6Gur9GFN3WCm5OO0fuyWs-fstXL4_N8tsosK1mX8ZwpC-zTKWltSURROFEwyZ0UnFhueSkJZcQYA9IzScGBIla63OWSOMb4GN0fd3ex_dlD6vSm3cfh6aRZTgslmKJiSJFjysY2pQhe72LYmthrSvSBox446gNHfeI4VO6OlQAA_3FFiSxEzv8A5vdtXA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Shubham</creator><creator>Raghvendra</creator><creator>Pathak, Chetan</creator><creator>Pandey, Saurabh Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6717-1803</orcidid><orcidid>https://orcid.org/0000-0003-4684-4762</orcidid><orcidid>https://orcid.org/0000-0001-6228-8968</orcidid><orcidid>https://orcid.org/0000-0002-5013-6745</orcidid></search><sort><creationdate>20200701</creationdate><title>Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell</title><author>Shubham ; Raghvendra ; Pathak, Chetan ; Pandey, Saurabh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-3429ce2bd98cc70655d65283d8630c3c3780120aaae8f281ede90c8d4d480d223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Absorption cross sections</topic><topic>Characteristic decay energies</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>defect</topic><topic>Defects</topic><topic>Design analysis</topic><topic>Design defects</topic><topic>Design factors</topic><topic>Design parameters</topic><topic>Gaussian distribution</topic><topic>Germanium</topic><topic>Lead</topic><topic>Lead free</topic><topic>Materials selection</topic><topic>methylammonium germanium tri-iodide (MAGeI₃)</topic><topic>Normal distribution</topic><topic>Numerical stability</topic><topic>Open circuit voltage</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>perovskite</topic><topic>Perovskites</topic><topic>Photonic band gap</topic><topic>Photovoltaic cells</topic><topic>recombination</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shubham</creatorcontrib><creatorcontrib>Raghvendra</creatorcontrib><creatorcontrib>Pathak, Chetan</creatorcontrib><creatorcontrib>Pandey, Saurabh Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shubham</au><au>Raghvendra</au><au>Pathak, Chetan</au><au>Pandey, Saurabh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>67</volume><issue>7</issue><spage>2837</spage><epage>2843</epage><pages>2837-2843</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[With the advancement of technology, highly efficient eco-friendly perovskite solar cells (PSCs) are desirable candidates for energy applications. In this article, we propose a design approach and potentiality of promising Pb-free PSC to analyze the different parameters. Different design strategies and factors such as defect density, characteristic decay energies, and capture cross section area have investigated using device simulation software. The defects in absorber layer are modeled by using exponentially decaying band tails for shallow-level defects and Gaussian distribution for the deep-level defects. By optimizing the device parameters, we have achieved a simulated conversion efficiency of 13.35% with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{oc} </tex-math></inline-formula>) = 0.89 V, short circuit current density (<inline-formula> <tex-math notation="LaTeX">{J}_{sc} </tex-math></inline-formula>) = 22.79 mA/cm 2 , and a fill factor (FF) = 65.28% under AM1.5G illumination. We have also studied the impact of absorber layer thickness and interface defect density on the performance of the solar cell. These simulation results can aid researchers in a reasonable choice of materials and optimally design high-performance PSC.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.2996570</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6717-1803</orcidid><orcidid>https://orcid.org/0000-0003-4684-4762</orcidid><orcidid>https://orcid.org/0000-0001-6228-8968</orcidid><orcidid>https://orcid.org/0000-0002-5013-6745</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2020-07, Vol.67 (7), p.2837-2843 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2020_2996570 |
source | IEEE Electronic Library (IEL) |
subjects | Absorbers Absorption cross sections Characteristic decay energies Circuits Computer simulation defect Defects Design analysis Design defects Design factors Design parameters Gaussian distribution Germanium Lead Lead free Materials selection methylammonium germanium tri-iodide (MAGeI₃) Normal distribution Numerical stability Open circuit voltage Optimization Performance evaluation perovskite Perovskites Photonic band gap Photovoltaic cells recombination Short circuit currents Solar cells Thickness Tin |
title | Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Performance,%20and%20Defect%20Density%20Analysis%20of%20Efficient%20Eco-Friendly%20Perovskite%20Solar%20Cell&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shubham&rft.date=2020-07-01&rft.volume=67&rft.issue=7&rft.spage=2837&rft.epage=2843&rft.pages=2837-2843&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.2996570&rft_dat=%3Cproquest_RIE%3E2415962916%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415962916&rft_id=info:pmid/&rft_ieee_id=9108564&rfr_iscdi=true |