An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes
A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is cal...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2020-10, Vol.67 (10), p.4033-4039 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4039 |
---|---|
container_issue | 10 |
container_start_page | 4033 |
container_title | IEEE transactions on electron devices |
container_volume | 67 |
creator | Du, Qiwen Tao, Xuehui |
description | A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is calculated. In the unipolar and low-injection modes, the effect of temperature on carrier mobility and conduction angle are added to the factors that need to be considered, whereas the influence of current density is considered in the high-injection mode. The carrier distribution in the high-injection mode is analyzed and applied to determine the resistance. And this resistance model is applied to the research of a forward characteristic model. The model is verified experimentally via the comparison of the calculated and measured characteristics. The experimental results prove that the model can not only predict the resistance in each working mode, but also accurately predict the forward current and voltage characteristics. |
doi_str_mv | 10.1109/TED.2020.2982684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2020_2982684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9064694</ieee_id><sourcerecordid>2446060372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-62fccfed2b4e8b974ba0746788ac9c558cf25deac63f7406856ede1de7222593</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08SKHYtvtdtsjAfxIQIxwb3a7s1rELbbLgX9vCcTT5M0870zyIHTL6JAxqh9X08mQU06HXCsulThDPZbnBdFSyHPUo5QpojOVXaKrGNcpSiF4D81HLV68kQ-ILnZlawHPfQ0b3PiAl27jrG_xuAyVq9MGwifUeEscafHSfvmu-97jh_n7coAnLtXiNbpoyk2Em9Pso9XTdDV-IbPF8-t4NCOWa9YRyRtrG6h5JUBVuhBVSQshC6VKq22eK9vwvIbSyqwpBJUql1ADq6HgnOc666P749lt8L87iJ1Z-11o00fDhZBU0qzgiaJHygYfY4DGbIP7KcPeMGoOzkxyZg7OzMlZqtwdKw4A_nFNk0Mtsj94tmWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446060372</pqid></control><display><type>article</type><title>An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Qiwen ; Tao, Xuehui</creator><creatorcontrib>Du, Qiwen ; Tao, Xuehui</creatorcontrib><description>A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is calculated. In the unipolar and low-injection modes, the effect of temperature on carrier mobility and conduction angle are added to the factors that need to be considered, whereas the influence of current density is considered in the high-injection mode. The carrier distribution in the high-injection mode is analyzed and applied to determine the resistance. And this resistance model is applied to the research of a forward characteristic model. The model is verified experimentally via the comparison of the calculated and measured characteristics. The experimental results prove that the model can not only predict the resistance in each working mode, but also accurately predict the forward current and voltage characteristics.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.2982684</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4H-silicon carbide (SiC) ; Carrier mobility ; Doping ; Forward characteristics ; merged p-i-n Schottky (MPS) diode ; ON-resistance ; P-i-n diodes ; Resistance ; Schottky diodes ; Semiconductor process modeling ; Silicon carbide ; Temperature effects</subject><ispartof>IEEE transactions on electron devices, 2020-10, Vol.67 (10), p.4033-4039</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-62fccfed2b4e8b974ba0746788ac9c558cf25deac63f7406856ede1de7222593</citedby><cites>FETCH-LOGICAL-c291t-62fccfed2b4e8b974ba0746788ac9c558cf25deac63f7406856ede1de7222593</cites><orcidid>0000-0002-9052-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9064694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9064694$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Qiwen</creatorcontrib><creatorcontrib>Tao, Xuehui</creatorcontrib><title>An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is calculated. In the unipolar and low-injection modes, the effect of temperature on carrier mobility and conduction angle are added to the factors that need to be considered, whereas the influence of current density is considered in the high-injection mode. The carrier distribution in the high-injection mode is analyzed and applied to determine the resistance. And this resistance model is applied to the research of a forward characteristic model. The model is verified experimentally via the comparison of the calculated and measured characteristics. The experimental results prove that the model can not only predict the resistance in each working mode, but also accurately predict the forward current and voltage characteristics.</description><subject>4H-silicon carbide (SiC)</subject><subject>Carrier mobility</subject><subject>Doping</subject><subject>Forward characteristics</subject><subject>merged p-i-n Schottky (MPS) diode</subject><subject>ON-resistance</subject><subject>P-i-n diodes</subject><subject>Resistance</subject><subject>Schottky diodes</subject><subject>Semiconductor process modeling</subject><subject>Silicon carbide</subject><subject>Temperature effects</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbw08SKHYtvtdtsjAfxIQIxwb3a7s1rELbbLgX9vCcTT5M0870zyIHTL6JAxqh9X08mQU06HXCsulThDPZbnBdFSyHPUo5QpojOVXaKrGNcpSiF4D81HLV68kQ-ILnZlawHPfQ0b3PiAl27jrG_xuAyVq9MGwifUeEscafHSfvmu-97jh_n7coAnLtXiNbpoyk2Em9Pso9XTdDV-IbPF8-t4NCOWa9YRyRtrG6h5JUBVuhBVSQshC6VKq22eK9vwvIbSyqwpBJUql1ADq6HgnOc666P749lt8L87iJ1Z-11o00fDhZBU0qzgiaJHygYfY4DGbIP7KcPeMGoOzkxyZg7OzMlZqtwdKw4A_nFNk0Mtsj94tmWf</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Du, Qiwen</creator><creator>Tao, Xuehui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9052-1648</orcidid></search><sort><creationdate>20201001</creationdate><title>An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes</title><author>Du, Qiwen ; Tao, Xuehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-62fccfed2b4e8b974ba0746788ac9c558cf25deac63f7406856ede1de7222593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4H-silicon carbide (SiC)</topic><topic>Carrier mobility</topic><topic>Doping</topic><topic>Forward characteristics</topic><topic>merged p-i-n Schottky (MPS) diode</topic><topic>ON-resistance</topic><topic>P-i-n diodes</topic><topic>Resistance</topic><topic>Schottky diodes</topic><topic>Semiconductor process modeling</topic><topic>Silicon carbide</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Qiwen</creatorcontrib><creatorcontrib>Tao, Xuehui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Qiwen</au><au>Tao, Xuehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>67</volume><issue>10</issue><spage>4033</spage><epage>4039</epage><pages>4033-4039</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is calculated. In the unipolar and low-injection modes, the effect of temperature on carrier mobility and conduction angle are added to the factors that need to be considered, whereas the influence of current density is considered in the high-injection mode. The carrier distribution in the high-injection mode is analyzed and applied to determine the resistance. And this resistance model is applied to the research of a forward characteristic model. The model is verified experimentally via the comparison of the calculated and measured characteristics. The experimental results prove that the model can not only predict the resistance in each working mode, but also accurately predict the forward current and voltage characteristics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.2982684</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9052-1648</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2020-10, Vol.67 (10), p.4033-4039 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2020_2982684 |
source | IEEE Electronic Library (IEL) |
subjects | 4H-silicon carbide (SiC) Carrier mobility Doping Forward characteristics merged p-i-n Schottky (MPS) diode ON-resistance P-i-n diodes Resistance Schottky diodes Semiconductor process modeling Silicon carbide Temperature effects |
title | An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ON-Resistance%20Model%20for%20Silicon%20Carbide%20Merged%20p-i-n%20Schottky%20(MPS)%20Diodes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Du,%20Qiwen&rft.date=2020-10-01&rft.volume=67&rft.issue=10&rft.spage=4033&rft.epage=4039&rft.pages=4033-4039&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.2982684&rft_dat=%3Cproquest_RIE%3E2446060372%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446060372&rft_id=info:pmid/&rft_ieee_id=9064694&rfr_iscdi=true |