An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes

A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-10, Vol.67 (10), p.4033-4039
Hauptverfasser: Du, Qiwen, Tao, Xuehui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4039
container_issue 10
container_start_page 4033
container_title IEEE transactions on electron devices
container_volume 67
creator Du, Qiwen
Tao, Xuehui
description A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is calculated. In the unipolar and low-injection modes, the effect of temperature on carrier mobility and conduction angle are added to the factors that need to be considered, whereas the influence of current density is considered in the high-injection mode. The carrier distribution in the high-injection mode is analyzed and applied to determine the resistance. And this resistance model is applied to the research of a forward characteristic model. The model is verified experimentally via the comparison of the calculated and measured characteristics. The experimental results prove that the model can not only predict the resistance in each working mode, but also accurately predict the forward current and voltage characteristics.
doi_str_mv 10.1109/TED.2020.2982684
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2020_2982684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9064694</ieee_id><sourcerecordid>2446060372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-62fccfed2b4e8b974ba0746788ac9c558cf25deac63f7406856ede1de7222593</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08SKHYtvtdtsjAfxIQIxwb3a7s1rELbbLgX9vCcTT5M0870zyIHTL6JAxqh9X08mQU06HXCsulThDPZbnBdFSyHPUo5QpojOVXaKrGNcpSiF4D81HLV68kQ-ILnZlawHPfQ0b3PiAl27jrG_xuAyVq9MGwifUeEscafHSfvmu-97jh_n7coAnLtXiNbpoyk2Em9Pso9XTdDV-IbPF8-t4NCOWa9YRyRtrG6h5JUBVuhBVSQshC6VKq22eK9vwvIbSyqwpBJUql1ADq6HgnOc666P749lt8L87iJ1Z-11o00fDhZBU0qzgiaJHygYfY4DGbIP7KcPeMGoOzkxyZg7OzMlZqtwdKw4A_nFNk0Mtsj94tmWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446060372</pqid></control><display><type>article</type><title>An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Qiwen ; Tao, Xuehui</creator><creatorcontrib>Du, Qiwen ; Tao, Xuehui</creatorcontrib><description>A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is calculated. In the unipolar and low-injection modes, the effect of temperature on carrier mobility and conduction angle are added to the factors that need to be considered, whereas the influence of current density is considered in the high-injection mode. The carrier distribution in the high-injection mode is analyzed and applied to determine the resistance. And this resistance model is applied to the research of a forward characteristic model. The model is verified experimentally via the comparison of the calculated and measured characteristics. The experimental results prove that the model can not only predict the resistance in each working mode, but also accurately predict the forward current and voltage characteristics.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.2982684</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4H-silicon carbide (SiC) ; Carrier mobility ; Doping ; Forward characteristics ; merged p-i-n Schottky (MPS) diode ; ON-resistance ; P-i-n diodes ; Resistance ; Schottky diodes ; Semiconductor process modeling ; Silicon carbide ; Temperature effects</subject><ispartof>IEEE transactions on electron devices, 2020-10, Vol.67 (10), p.4033-4039</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-62fccfed2b4e8b974ba0746788ac9c558cf25deac63f7406856ede1de7222593</citedby><cites>FETCH-LOGICAL-c291t-62fccfed2b4e8b974ba0746788ac9c558cf25deac63f7406856ede1de7222593</cites><orcidid>0000-0002-9052-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9064694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9064694$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Qiwen</creatorcontrib><creatorcontrib>Tao, Xuehui</creatorcontrib><title>An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is calculated. In the unipolar and low-injection modes, the effect of temperature on carrier mobility and conduction angle are added to the factors that need to be considered, whereas the influence of current density is considered in the high-injection mode. The carrier distribution in the high-injection mode is analyzed and applied to determine the resistance. And this resistance model is applied to the research of a forward characteristic model. The model is verified experimentally via the comparison of the calculated and measured characteristics. The experimental results prove that the model can not only predict the resistance in each working mode, but also accurately predict the forward current and voltage characteristics.</description><subject>4H-silicon carbide (SiC)</subject><subject>Carrier mobility</subject><subject>Doping</subject><subject>Forward characteristics</subject><subject>merged p-i-n Schottky (MPS) diode</subject><subject>ON-resistance</subject><subject>P-i-n diodes</subject><subject>Resistance</subject><subject>Schottky diodes</subject><subject>Semiconductor process modeling</subject><subject>Silicon carbide</subject><subject>Temperature effects</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbw08SKHYtvtdtsjAfxIQIxwb3a7s1rELbbLgX9vCcTT5M0870zyIHTL6JAxqh9X08mQU06HXCsulThDPZbnBdFSyHPUo5QpojOVXaKrGNcpSiF4D81HLV68kQ-ILnZlawHPfQ0b3PiAl27jrG_xuAyVq9MGwifUeEscafHSfvmu-97jh_n7coAnLtXiNbpoyk2Em9Pso9XTdDV-IbPF8-t4NCOWa9YRyRtrG6h5JUBVuhBVSQshC6VKq22eK9vwvIbSyqwpBJUql1ADq6HgnOc666P749lt8L87iJ1Z-11o00fDhZBU0qzgiaJHygYfY4DGbIP7KcPeMGoOzkxyZg7OzMlZqtwdKw4A_nFNk0Mtsj94tmWf</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Du, Qiwen</creator><creator>Tao, Xuehui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9052-1648</orcidid></search><sort><creationdate>20201001</creationdate><title>An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes</title><author>Du, Qiwen ; Tao, Xuehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-62fccfed2b4e8b974ba0746788ac9c558cf25deac63f7406856ede1de7222593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4H-silicon carbide (SiC)</topic><topic>Carrier mobility</topic><topic>Doping</topic><topic>Forward characteristics</topic><topic>merged p-i-n Schottky (MPS) diode</topic><topic>ON-resistance</topic><topic>P-i-n diodes</topic><topic>Resistance</topic><topic>Schottky diodes</topic><topic>Semiconductor process modeling</topic><topic>Silicon carbide</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Qiwen</creatorcontrib><creatorcontrib>Tao, Xuehui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Qiwen</au><au>Tao, Xuehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>67</volume><issue>10</issue><spage>4033</spage><epage>4039</epage><pages>4033-4039</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A novel resistance model of silicon-carbide-merged p-i-n Schottky diodes is presented in this article. With this model, the device characteristics and power dissipation can be predicted. The ON-resistance in the three operating modes, namely, unipolar, low-injection, and high-injection modes, is calculated. In the unipolar and low-injection modes, the effect of temperature on carrier mobility and conduction angle are added to the factors that need to be considered, whereas the influence of current density is considered in the high-injection mode. The carrier distribution in the high-injection mode is analyzed and applied to determine the resistance. And this resistance model is applied to the research of a forward characteristic model. The model is verified experimentally via the comparison of the calculated and measured characteristics. The experimental results prove that the model can not only predict the resistance in each working mode, but also accurately predict the forward current and voltage characteristics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.2982684</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9052-1648</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-10, Vol.67 (10), p.4033-4039
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2020_2982684
source IEEE Electronic Library (IEL)
subjects 4H-silicon carbide (SiC)
Carrier mobility
Doping
Forward characteristics
merged p-i-n Schottky (MPS) diode
ON-resistance
P-i-n diodes
Resistance
Schottky diodes
Semiconductor process modeling
Silicon carbide
Temperature effects
title An ON-Resistance Model for Silicon Carbide Merged p-i-n Schottky (MPS) Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ON-Resistance%20Model%20for%20Silicon%20Carbide%20Merged%20p-i-n%20Schottky%20(MPS)%20Diodes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Du,%20Qiwen&rft.date=2020-10-01&rft.volume=67&rft.issue=10&rft.spage=4033&rft.epage=4039&rft.pages=4033-4039&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.2982684&rft_dat=%3Cproquest_RIE%3E2446060372%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446060372&rft_id=info:pmid/&rft_ieee_id=9064694&rfr_iscdi=true