Gate Conduction Mechanisms and Lifetime Modeling of p-Gate AlGaN/GaN High-Electron-Mobility Transistors

The gate conduction mechanisms in p-gallium nitride (GaN)/AlGaN/GaN enhancement mode transistors are investigated using temperature-dependent dc gate current measurements. In each of the different gate voltage regions, a physical model is proposed and compared to experiment. At negative gate bias, P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2018-12, Vol.65 (12), p.5365-5372
Hauptverfasser: Stockman, Arno, Masin, Fabrizio, Meneghini, Matteo, Zanoni, Enrico, Meneghesso, Gaudenzio, Bakeroot, Benoit, Moens, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5372
container_issue 12
container_start_page 5365
container_title IEEE transactions on electron devices
container_volume 65
creator Stockman, Arno
Masin, Fabrizio
Meneghini, Matteo
Zanoni, Enrico
Meneghesso, Gaudenzio
Bakeroot, Benoit
Moens, Peter
description The gate conduction mechanisms in p-gallium nitride (GaN)/AlGaN/GaN enhancement mode transistors are investigated using temperature-dependent dc gate current measurements. In each of the different gate voltage regions, a physical model is proposed and compared to experiment. At negative gate bias, Poole-Frenkel emission (PFE) occurs within the passivation dielectric from gate to source. At positive gate bias, the p-GaN/AlGaN/GaN "p-i-n" diode is in forward operation mode, and the gate current is limited by hole supply at the Schottky contact. At low gate voltages, the current is governed by thermionic emission with Schottky barrier lowering in dislocation lines. Increasing the gate voltage and temperature results in thermally assisted tunneling (TAT) across the same barrier. An improved gate process reduces the gate current in the positive gate bias region and eliminates the onset of TAT. However, at high positive gate bias, a sharp increase in current is observed originating from PFE at the metal/ p-GaN interface. Using the extracted conduction mechanisms for both devices, accurate lifetime models are constructed. The device fabricated with the novel gate process exhibits a maximum gate voltage of 7.2 V at {t}_{\textsf {1}\%}=\textsf {10} years.
doi_str_mv 10.1109/TED.2018.2877262
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2018_2877262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8525132</ieee_id><sourcerecordid>2137554781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-f18940fa0d4580665efa9000bab5e9996005a1b709f49c5f3ee9ebd5021ff40f3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08bzQj-3u9kgQwQT0guemuzuFkmWLbTnw7y1CPEwmk3mfmeRB6JmSEaVEjteztxEjtBqxqixZwW7QgApRZrLIi1s0IGmVSV7xe_QQwi6NRZ6zAdrMdQQ8dX17bKJ1PV5Bs9W9DfuAdd_ipTUQ7R7wyrXQ2X6DncGH7I-adHP9OU6FF3azzWYdNNG7Plu52nY2nvDa6z7YEJ0Pj-jO6C7A07UP0ff7bD1dZMuv-cd0sswaLmXMDK1kTowmbS4qUhQCjJaEkFrXAqSUBSFC07ok0uSyEYYDSKhbQRg1JoF8iF4vdw_e_RwhRLVzR9-nl4pRXgqRlxVNKXJJNd6F4MGog7d77U-KEnXWqZJOddaprjoT8nJBLAD8xyvBBOWM_wKpbnBP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137554781</pqid></control><display><type>article</type><title>Gate Conduction Mechanisms and Lifetime Modeling of p-Gate AlGaN/GaN High-Electron-Mobility Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Stockman, Arno ; Masin, Fabrizio ; Meneghini, Matteo ; Zanoni, Enrico ; Meneghesso, Gaudenzio ; Bakeroot, Benoit ; Moens, Peter</creator><creatorcontrib>Stockman, Arno ; Masin, Fabrizio ; Meneghini, Matteo ; Zanoni, Enrico ; Meneghesso, Gaudenzio ; Bakeroot, Benoit ; Moens, Peter</creatorcontrib><description>The gate conduction mechanisms in p-gallium nitride (GaN)/AlGaN/GaN enhancement mode transistors are investigated using temperature-dependent dc gate current measurements. In each of the different gate voltage regions, a physical model is proposed and compared to experiment. At negative gate bias, Poole-Frenkel emission (PFE) occurs within the passivation dielectric from gate to source. At positive gate bias, the p-GaN/AlGaN/GaN "p-i-n" diode is in forward operation mode, and the gate current is limited by hole supply at the Schottky contact. At low gate voltages, the current is governed by thermionic emission with Schottky barrier lowering in dislocation lines. Increasing the gate voltage and temperature results in thermally assisted tunneling (TAT) across the same barrier. An improved gate process reduces the gate current in the positive gate bias region and eliminates the onset of TAT. However, at high positive gate bias, a sharp increase in current is observed originating from PFE at the metal/ p-GaN interface. Using the extracted conduction mechanisms for both devices, accurate lifetime models are constructed. The device fabricated with the novel gate process exhibits a maximum gate voltage of 7.2 V at &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{t}_{\textsf {1}\%}=\textsf {10} &lt;/tex-math&gt;&lt;/inline-formula&gt; years.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2018.2877262</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitride ; Aluminum gallium nitrides ; Bias ; Conduction mechanism ; Current measurement ; Dislocations ; Electric potential ; enhancement mode ; Gallium nitride ; gallium nitride (GaN) ; Gallium nitrides ; High electron mobility transistors ; high-electron-mobility transistor (HEMT) ; Logic gates ; p-GaN gate ; Passivation ; Schottky diodes ; Semiconductor devices ; Service life assessment ; Temperature dependence ; Thermionic emission ; time-dependent breakdown (TDB) ; Transistors ; Wide band gap semiconductors</subject><ispartof>IEEE transactions on electron devices, 2018-12, Vol.65 (12), p.5365-5372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-f18940fa0d4580665efa9000bab5e9996005a1b709f49c5f3ee9ebd5021ff40f3</citedby><cites>FETCH-LOGICAL-c399t-f18940fa0d4580665efa9000bab5e9996005a1b709f49c5f3ee9ebd5021ff40f3</cites><orcidid>0000-0001-7349-9656 ; 0000-0003-2421-505X ; 0000-0002-8992-4685 ; 0000-0002-6947-1797 ; 0000-0002-6715-4827 ; 0000-0003-4392-1777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8525132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8525132$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stockman, Arno</creatorcontrib><creatorcontrib>Masin, Fabrizio</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Bakeroot, Benoit</creatorcontrib><creatorcontrib>Moens, Peter</creatorcontrib><title>Gate Conduction Mechanisms and Lifetime Modeling of p-Gate AlGaN/GaN High-Electron-Mobility Transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The gate conduction mechanisms in p-gallium nitride (GaN)/AlGaN/GaN enhancement mode transistors are investigated using temperature-dependent dc gate current measurements. In each of the different gate voltage regions, a physical model is proposed and compared to experiment. At negative gate bias, Poole-Frenkel emission (PFE) occurs within the passivation dielectric from gate to source. At positive gate bias, the p-GaN/AlGaN/GaN "p-i-n" diode is in forward operation mode, and the gate current is limited by hole supply at the Schottky contact. At low gate voltages, the current is governed by thermionic emission with Schottky barrier lowering in dislocation lines. Increasing the gate voltage and temperature results in thermally assisted tunneling (TAT) across the same barrier. An improved gate process reduces the gate current in the positive gate bias region and eliminates the onset of TAT. However, at high positive gate bias, a sharp increase in current is observed originating from PFE at the metal/ p-GaN interface. Using the extracted conduction mechanisms for both devices, accurate lifetime models are constructed. The device fabricated with the novel gate process exhibits a maximum gate voltage of 7.2 V at &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{t}_{\textsf {1}\%}=\textsf {10} &lt;/tex-math&gt;&lt;/inline-formula&gt; years.</description><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>Bias</subject><subject>Conduction mechanism</subject><subject>Current measurement</subject><subject>Dislocations</subject><subject>Electric potential</subject><subject>enhancement mode</subject><subject>Gallium nitride</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>High electron mobility transistors</subject><subject>high-electron-mobility transistor (HEMT)</subject><subject>Logic gates</subject><subject>p-GaN gate</subject><subject>Passivation</subject><subject>Schottky diodes</subject><subject>Semiconductor devices</subject><subject>Service life assessment</subject><subject>Temperature dependence</subject><subject>Thermionic emission</subject><subject>time-dependent breakdown (TDB)</subject><subject>Transistors</subject><subject>Wide band gap semiconductors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbw08bzQj-3u9kgQwQT0guemuzuFkmWLbTnw7y1CPEwmk3mfmeRB6JmSEaVEjteztxEjtBqxqixZwW7QgApRZrLIi1s0IGmVSV7xe_QQwi6NRZ6zAdrMdQQ8dX17bKJ1PV5Bs9W9DfuAdd_ipTUQ7R7wyrXQ2X6DncGH7I-adHP9OU6FF3azzWYdNNG7Plu52nY2nvDa6z7YEJ0Pj-jO6C7A07UP0ff7bD1dZMuv-cd0sswaLmXMDK1kTowmbS4qUhQCjJaEkFrXAqSUBSFC07ok0uSyEYYDSKhbQRg1JoF8iF4vdw_e_RwhRLVzR9-nl4pRXgqRlxVNKXJJNd6F4MGog7d77U-KEnXWqZJOddaprjoT8nJBLAD8xyvBBOWM_wKpbnBP</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Stockman, Arno</creator><creator>Masin, Fabrizio</creator><creator>Meneghini, Matteo</creator><creator>Zanoni, Enrico</creator><creator>Meneghesso, Gaudenzio</creator><creator>Bakeroot, Benoit</creator><creator>Moens, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7349-9656</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><orcidid>https://orcid.org/0000-0002-8992-4685</orcidid><orcidid>https://orcid.org/0000-0002-6947-1797</orcidid><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0003-4392-1777</orcidid></search><sort><creationdate>20181201</creationdate><title>Gate Conduction Mechanisms and Lifetime Modeling of p-Gate AlGaN/GaN High-Electron-Mobility Transistors</title><author>Stockman, Arno ; Masin, Fabrizio ; Meneghini, Matteo ; Zanoni, Enrico ; Meneghesso, Gaudenzio ; Bakeroot, Benoit ; Moens, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-f18940fa0d4580665efa9000bab5e9996005a1b709f49c5f3ee9ebd5021ff40f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>Bias</topic><topic>Conduction mechanism</topic><topic>Current measurement</topic><topic>Dislocations</topic><topic>Electric potential</topic><topic>enhancement mode</topic><topic>Gallium nitride</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>High electron mobility transistors</topic><topic>high-electron-mobility transistor (HEMT)</topic><topic>Logic gates</topic><topic>p-GaN gate</topic><topic>Passivation</topic><topic>Schottky diodes</topic><topic>Semiconductor devices</topic><topic>Service life assessment</topic><topic>Temperature dependence</topic><topic>Thermionic emission</topic><topic>time-dependent breakdown (TDB)</topic><topic>Transistors</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockman, Arno</creatorcontrib><creatorcontrib>Masin, Fabrizio</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Bakeroot, Benoit</creatorcontrib><creatorcontrib>Moens, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stockman, Arno</au><au>Masin, Fabrizio</au><au>Meneghini, Matteo</au><au>Zanoni, Enrico</au><au>Meneghesso, Gaudenzio</au><au>Bakeroot, Benoit</au><au>Moens, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate Conduction Mechanisms and Lifetime Modeling of p-Gate AlGaN/GaN High-Electron-Mobility Transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>65</volume><issue>12</issue><spage>5365</spage><epage>5372</epage><pages>5365-5372</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The gate conduction mechanisms in p-gallium nitride (GaN)/AlGaN/GaN enhancement mode transistors are investigated using temperature-dependent dc gate current measurements. In each of the different gate voltage regions, a physical model is proposed and compared to experiment. At negative gate bias, Poole-Frenkel emission (PFE) occurs within the passivation dielectric from gate to source. At positive gate bias, the p-GaN/AlGaN/GaN "p-i-n" diode is in forward operation mode, and the gate current is limited by hole supply at the Schottky contact. At low gate voltages, the current is governed by thermionic emission with Schottky barrier lowering in dislocation lines. Increasing the gate voltage and temperature results in thermally assisted tunneling (TAT) across the same barrier. An improved gate process reduces the gate current in the positive gate bias region and eliminates the onset of TAT. However, at high positive gate bias, a sharp increase in current is observed originating from PFE at the metal/ p-GaN interface. Using the extracted conduction mechanisms for both devices, accurate lifetime models are constructed. The device fabricated with the novel gate process exhibits a maximum gate voltage of 7.2 V at &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{t}_{\textsf {1}\%}=\textsf {10} &lt;/tex-math&gt;&lt;/inline-formula&gt; years.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2018.2877262</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7349-9656</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><orcidid>https://orcid.org/0000-0002-8992-4685</orcidid><orcidid>https://orcid.org/0000-0002-6947-1797</orcidid><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0003-4392-1777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2018-12, Vol.65 (12), p.5365-5372
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2018_2877262
source IEEE Electronic Library (IEL)
subjects Aluminum gallium nitride
Aluminum gallium nitrides
Bias
Conduction mechanism
Current measurement
Dislocations
Electric potential
enhancement mode
Gallium nitride
gallium nitride (GaN)
Gallium nitrides
High electron mobility transistors
high-electron-mobility transistor (HEMT)
Logic gates
p-GaN gate
Passivation
Schottky diodes
Semiconductor devices
Service life assessment
Temperature dependence
Thermionic emission
time-dependent breakdown (TDB)
Transistors
Wide band gap semiconductors
title Gate Conduction Mechanisms and Lifetime Modeling of p-Gate AlGaN/GaN High-Electron-Mobility Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%20Conduction%20Mechanisms%20and%20Lifetime%20Modeling%20of%20p-Gate%20AlGaN/GaN%20High-Electron-Mobility%20Transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Stockman,%20Arno&rft.date=2018-12-01&rft.volume=65&rft.issue=12&rft.spage=5365&rft.epage=5372&rft.pages=5365-5372&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2018.2877262&rft_dat=%3Cproquest_RIE%3E2137554781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137554781&rft_id=info:pmid/&rft_ieee_id=8525132&rfr_iscdi=true