Improved Capacitance Model Involving Fringing Effects for Electret-Based Rotational Energy Harvesting Devices
Electret-based rotational energy harvesting (EBREH) technology is promising to overcome the electrostatically converted power limitation of velocity-damped resonance generators. Its structural parameter-dominated capacitance variation and parasitic capacitance should be correctly evaluated for the o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2018-04, Vol.65 (4), p.1597-1603 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electret-based rotational energy harvesting (EBREH) technology is promising to overcome the electrostatically converted power limitation of velocity-damped resonance generators. Its structural parameter-dominated capacitance variation and parasitic capacitance should be correctly evaluated for the optimal design of EBREH devices regarding the high power output implement. Basically, finite-element analysis (FEA) seems the only access to predict capacitances across the complicated interdigitated electrodes in 3-D space because of partially or completely neglected fringing effects in currently available theoretical models. In this paper, we proposed a more efficient model for the capacitance of EBREH devices based on four-positioned capacitors, i.e., coplanar, parallel-plate, flat-plate nonparallel, and sector coplanar capacitors. Distinctively differing from other models, our model takes 3-D fringing effects associated with fringing fields into account properly in each type of the capacitor. In addition, the accuracy of the proposed model was much improved by combining parallel-wire capacitance theory and Schwarz-Christoffel mapping. Our model was verified through both the FEA and practical measurements with a fabricated EBREH structure. The measurement indicated that this novel capacitance model can be readily applicable to rotary and linear motion-driven EBREH devices and electrostatic sensors for further design optimizations with device parameters. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2018.2803145 |