A Method for Generating High-Current, Ultrashort, and Square-Wave Pulses Based on a Photoconductive Switch Operating in the Quenched High-Gain Mode

The quenched high-gain mode of semi-insulation photoconductive semiconductor switch (PCSS) is a new operating mode. It has many advantages over the traditional modes, such as ultrafast rise time (mainly determined by the laser), high power, short pulsewidth, ultrafast fall time (mainly determined by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2014-03, Vol.61 (3), p.850-854
Hauptverfasser: Wang, Xin-Mei, Zhang, Miao-Miao, Shi, Wei, Yan, Yan-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 3
container_start_page 850
container_title IEEE transactions on electron devices
container_volume 61
creator Wang, Xin-Mei
Zhang, Miao-Miao
Shi, Wei
Yan, Yan-Hui
description The quenched high-gain mode of semi-insulation photoconductive semiconductor switch (PCSS) is a new operating mode. It has many advantages over the traditional modes, such as ultrafast rise time (mainly determined by the laser), high power, short pulsewidth, ultrafast fall time (mainly determined by the carrier lifetime), and so on, making it possible to generate high-power ultrashort pulses. To approximate square waveforms, a method for controlling PCSS is presented in this paper. First, a physical model of PCSS is established, which depends on the electronic negative differential mobility, the high-voltage impact ionization, the characteristic of luminous current filament, and the continuity equation of current. Second, constraint equations of circuit parameters are deduced to hold the dynamic balance of the tendency of current to increase or decrease for obtaining the flat top of output pulses. Finally, the control circuits of GaAs:EL2 PCSS operating in the quenched high-gain mode are designed, the parameters of which are the solutions to the constraint equations. The experimental results demonstrate that the method can generate square-wave pulses of kiloampere amplitude and about 50-ns pulsewidth on a subohm load.
doi_str_mv 10.1109/TED.2014.2299572
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2014_2299572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6731550</ieee_id><sourcerecordid>1685781381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-4c1afcec40e55d33a89a6f60b669359d1c1d0c1c580a3e05a20cf3c65a6f737e3</originalsourceid><addsrcrecordid>eNpdkc1qGzEUhUVpIK7TfSAbQTZddBz9jDSjpeskTsHBLknoUqiaO5kxtmRLmpY-R164Sp1kERDoh--cK_gQOqVkQilRF_dXlxNGaDlhTClRsQ9oRIWoCiVL-RGNCKF1oXjNj9GnGNf5KsuSjdDTFN9C6nyDWx_wHBwEk3r3iG_6x66YDSGAS1_xwyYFEzsf8tm4Bt_tBxOg-Gl-A14NmwgRfzMRGuwdNnjV-eStd81gU5-Juz99sh1e7l7Le4dTB_jHAM52OfV_2Nzk51vfwAk6ak3u_Pyyj9HD9dX97KZYLOffZ9NFYTkrU1FaaloLtiQgRMO5qZWRrSS_pFRcqIZa2hBLraiJ4UCEYcS23EqRqYpXwMfoy6F3F_x-gJj0to8WNhvjwA9RU1mLqqY8rzE6f4eu_RBc_p2mgkgmBWUqU-RA2eBjDNDqXei3JvzVlOhnSzpb0s-W9IulHDk7RHoAeMNlxbM8wv8BobWN9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506265129</pqid></control><display><type>article</type><title>A Method for Generating High-Current, Ultrashort, and Square-Wave Pulses Based on a Photoconductive Switch Operating in the Quenched High-Gain Mode</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xin-Mei ; Zhang, Miao-Miao ; Shi, Wei ; Yan, Yan-Hui</creator><creatorcontrib>Wang, Xin-Mei ; Zhang, Miao-Miao ; Shi, Wei ; Yan, Yan-Hui</creatorcontrib><description>The quenched high-gain mode of semi-insulation photoconductive semiconductor switch (PCSS) is a new operating mode. It has many advantages over the traditional modes, such as ultrafast rise time (mainly determined by the laser), high power, short pulsewidth, ultrafast fall time (mainly determined by the carrier lifetime), and so on, making it possible to generate high-power ultrashort pulses. To approximate square waveforms, a method for controlling PCSS is presented in this paper. First, a physical model of PCSS is established, which depends on the electronic negative differential mobility, the high-voltage impact ionization, the characteristic of luminous current filament, and the continuity equation of current. Second, constraint equations of circuit parameters are deduced to hold the dynamic balance of the tendency of current to increase or decrease for obtaining the flat top of output pulses. Finally, the control circuits of GaAs:EL2 PCSS operating in the quenched high-gain mode are designed, the parameters of which are the solutions to the constraint equations. The experimental results demonstrate that the method can generate square-wave pulses of kiloampere amplitude and about 50-ns pulsewidth on a subohm load.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2014.2299572</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Differential equations ; Educational institutions ; Electronics ; Equations ; GaAs ; Gallium arsenide ; high-gain ; Ionization ; Mathematical analysis ; Mathematical model ; Mathematical models ; Optical pulse generation ; Optical switches ; photoconductive switch ; Quenching (cooling) ; Semiconductors ; Solar energy ; square-wave pulse ; Switches</subject><ispartof>IEEE transactions on electron devices, 2014-03, Vol.61 (3), p.850-854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-4c1afcec40e55d33a89a6f60b669359d1c1d0c1c580a3e05a20cf3c65a6f737e3</citedby><cites>FETCH-LOGICAL-c324t-4c1afcec40e55d33a89a6f60b669359d1c1d0c1c580a3e05a20cf3c65a6f737e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6731550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6731550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xin-Mei</creatorcontrib><creatorcontrib>Zhang, Miao-Miao</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Yan, Yan-Hui</creatorcontrib><title>A Method for Generating High-Current, Ultrashort, and Square-Wave Pulses Based on a Photoconductive Switch Operating in the Quenched High-Gain Mode</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The quenched high-gain mode of semi-insulation photoconductive semiconductor switch (PCSS) is a new operating mode. It has many advantages over the traditional modes, such as ultrafast rise time (mainly determined by the laser), high power, short pulsewidth, ultrafast fall time (mainly determined by the carrier lifetime), and so on, making it possible to generate high-power ultrashort pulses. To approximate square waveforms, a method for controlling PCSS is presented in this paper. First, a physical model of PCSS is established, which depends on the electronic negative differential mobility, the high-voltage impact ionization, the characteristic of luminous current filament, and the continuity equation of current. Second, constraint equations of circuit parameters are deduced to hold the dynamic balance of the tendency of current to increase or decrease for obtaining the flat top of output pulses. Finally, the control circuits of GaAs:EL2 PCSS operating in the quenched high-gain mode are designed, the parameters of which are the solutions to the constraint equations. The experimental results demonstrate that the method can generate square-wave pulses of kiloampere amplitude and about 50-ns pulsewidth on a subohm load.</description><subject>Differential equations</subject><subject>Educational institutions</subject><subject>Electronics</subject><subject>Equations</subject><subject>GaAs</subject><subject>Gallium arsenide</subject><subject>high-gain</subject><subject>Ionization</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Optical pulse generation</subject><subject>Optical switches</subject><subject>photoconductive switch</subject><subject>Quenching (cooling)</subject><subject>Semiconductors</subject><subject>Solar energy</subject><subject>square-wave pulse</subject><subject>Switches</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1qGzEUhUVpIK7TfSAbQTZddBz9jDSjpeskTsHBLknoUqiaO5kxtmRLmpY-R164Sp1kERDoh--cK_gQOqVkQilRF_dXlxNGaDlhTClRsQ9oRIWoCiVL-RGNCKF1oXjNj9GnGNf5KsuSjdDTFN9C6nyDWx_wHBwEk3r3iG_6x66YDSGAS1_xwyYFEzsf8tm4Bt_tBxOg-Gl-A14NmwgRfzMRGuwdNnjV-eStd81gU5-Juz99sh1e7l7Le4dTB_jHAM52OfV_2Nzk51vfwAk6ak3u_Pyyj9HD9dX97KZYLOffZ9NFYTkrU1FaaloLtiQgRMO5qZWRrSS_pFRcqIZa2hBLraiJ4UCEYcS23EqRqYpXwMfoy6F3F_x-gJj0to8WNhvjwA9RU1mLqqY8rzE6f4eu_RBc_p2mgkgmBWUqU-RA2eBjDNDqXei3JvzVlOhnSzpb0s-W9IulHDk7RHoAeMNlxbM8wv8BobWN9w</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Wang, Xin-Mei</creator><creator>Zhang, Miao-Miao</creator><creator>Shi, Wei</creator><creator>Yan, Yan-Hui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>A Method for Generating High-Current, Ultrashort, and Square-Wave Pulses Based on a Photoconductive Switch Operating in the Quenched High-Gain Mode</title><author>Wang, Xin-Mei ; Zhang, Miao-Miao ; Shi, Wei ; Yan, Yan-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-4c1afcec40e55d33a89a6f60b669359d1c1d0c1c580a3e05a20cf3c65a6f737e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Differential equations</topic><topic>Educational institutions</topic><topic>Electronics</topic><topic>Equations</topic><topic>GaAs</topic><topic>Gallium arsenide</topic><topic>high-gain</topic><topic>Ionization</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Optical pulse generation</topic><topic>Optical switches</topic><topic>photoconductive switch</topic><topic>Quenching (cooling)</topic><topic>Semiconductors</topic><topic>Solar energy</topic><topic>square-wave pulse</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin-Mei</creatorcontrib><creatorcontrib>Zhang, Miao-Miao</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Yan, Yan-Hui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xin-Mei</au><au>Zhang, Miao-Miao</au><au>Shi, Wei</au><au>Yan, Yan-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Generating High-Current, Ultrashort, and Square-Wave Pulses Based on a Photoconductive Switch Operating in the Quenched High-Gain Mode</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>61</volume><issue>3</issue><spage>850</spage><epage>854</epage><pages>850-854</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The quenched high-gain mode of semi-insulation photoconductive semiconductor switch (PCSS) is a new operating mode. It has many advantages over the traditional modes, such as ultrafast rise time (mainly determined by the laser), high power, short pulsewidth, ultrafast fall time (mainly determined by the carrier lifetime), and so on, making it possible to generate high-power ultrashort pulses. To approximate square waveforms, a method for controlling PCSS is presented in this paper. First, a physical model of PCSS is established, which depends on the electronic negative differential mobility, the high-voltage impact ionization, the characteristic of luminous current filament, and the continuity equation of current. Second, constraint equations of circuit parameters are deduced to hold the dynamic balance of the tendency of current to increase or decrease for obtaining the flat top of output pulses. Finally, the control circuits of GaAs:EL2 PCSS operating in the quenched high-gain mode are designed, the parameters of which are the solutions to the constraint equations. The experimental results demonstrate that the method can generate square-wave pulses of kiloampere amplitude and about 50-ns pulsewidth on a subohm load.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2014.2299572</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2014-03, Vol.61 (3), p.850-854
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2014_2299572
source IEEE Electronic Library (IEL)
subjects Differential equations
Educational institutions
Electronics
Equations
GaAs
Gallium arsenide
high-gain
Ionization
Mathematical analysis
Mathematical model
Mathematical models
Optical pulse generation
Optical switches
photoconductive switch
Quenching (cooling)
Semiconductors
Solar energy
square-wave pulse
Switches
title A Method for Generating High-Current, Ultrashort, and Square-Wave Pulses Based on a Photoconductive Switch Operating in the Quenched High-Gain Mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Generating%20High-Current,%20Ultrashort,%20and%20Square-Wave%20Pulses%20Based%20on%20a%20Photoconductive%20Switch%20Operating%20in%20the%20Quenched%20High-Gain%20Mode&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Wang,%20Xin-Mei&rft.date=2014-03-01&rft.volume=61&rft.issue=3&rft.spage=850&rft.epage=854&rft.pages=850-854&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2014.2299572&rft_dat=%3Cproquest_RIE%3E1685781381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506265129&rft_id=info:pmid/&rft_ieee_id=6731550&rfr_iscdi=true