Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application

In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2009-08, Vol.56 (8), p.1608-1617
Hauptverfasser: Shian-Jyh Lin, Chao-Sung Lai, Yi-Jung Chen, Sheng-Tsung Chen, Chia Chuan Hsu, Huang, B., Chuang, G., Neng-Tai Shih, Chung-Yuan Lee, Pei-Ing Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1617
container_issue 8
container_start_page 1608
container_title IEEE transactions on electron devices
container_volume 56
creator Shian-Jyh Lin
Chao-Sung Lai
Yi-Jung Chen
Sheng-Tsung Chen
Chia Chuan Hsu
Huang, B.
Chuang, G.
Neng-Tai Shih
Chung-Yuan Lee
Pei-Ing Lee
description In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential for DRAM application. The periphery NMOS off current was reduced by 36%. This off-current improvement reduced the standby current by 5% in a DRAM functional test. The GIDL reductions for an NMOS array and periphery N- and PMOSs were 14.5%, 15%, and 39%, respectively. A model for GIDL improvement by MFLA application to DRAM production was proposed. It is believed that the main GIDL-impacted factor was the high electric field caused by defect-assisted tunneling and junction profile abruptness under the gate edge. Bright field and weak-beam dark-field TEM images showed perfect dislocation loops and fault dislocation loops staying in the {113} plane with a size of around 17 x 20 nm in the junction area. These defects could be one of the leakage sources for a defect-assisted trap charge, leading to trap-assisted tunneling.
doi_str_mv 10.1109/TED.2009.2022689
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2009_2022689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5159449</ieee_id><sourcerecordid>2292068891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-9edbe4a39849f304f24865a862a0148388a174a7f6debcfeb5399b25dab910443</originalsourceid><addsrcrecordid>eNpdkM2LFDEQxRtRcFy9C16CILt76DVfnUmOzc7OONCDIOs5VKerNWsmPSY9gv-9GWbYg5cqivq9x-NV1XtG7xij5vPjw-qOU2rK4Fxp86JasKZZ1kZJ9bJaUMp0bYQWr6s3OT-VU0nJFxVuYMZ6G4ejw4GsEvhIOoRf8APJzWa76m7Jdn9I0x_cY5zJOCWy8yH4jG6KA1kHyD9JGyNCIDe7ddfekuKw-tbuSHs4BO9g9lN8W70aIWR8d9lX1ff1w-P9l7r7utnet13tRMPn2uDQowRhtDSjoHLkUqsGtOJAmdRCa2BLCctRDdi7EftGGNPzZoDeMCqluKquz74l8e8j5tnufXYYAkScjtlqVay5WNJCfvyPfJqOKZZwVjfKcK2oLhA9Qy5NOScc7SH5PaS_llF7at2W1u2pdXtpvUg-XXwhOwhjguh8ftZxprVU4sR9OHMeEZ_fDWuMlEb8A9d-h3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856928608</pqid></control><display><type>article</type><title>Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application</title><source>IEEE Electronic Library (IEL)</source><creator>Shian-Jyh Lin ; Chao-Sung Lai ; Yi-Jung Chen ; Sheng-Tsung Chen ; Chia Chuan Hsu ; Huang, B. ; Chuang, G. ; Neng-Tai Shih ; Chung-Yuan Lee ; Pei-Ing Lee</creator><creatorcontrib>Shian-Jyh Lin ; Chao-Sung Lai ; Yi-Jung Chen ; Sheng-Tsung Chen ; Chia Chuan Hsu ; Huang, B. ; Chuang, G. ; Neng-Tai Shih ; Chung-Yuan Lee ; Pei-Ing Lee</creatorcontrib><description>In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential for DRAM application. The periphery NMOS off current was reduced by 36%. This off-current improvement reduced the standby current by 5% in a DRAM functional test. The GIDL reductions for an NMOS array and periphery N- and PMOSs were 14.5%, 15%, and 39%, respectively. A model for GIDL improvement by MFLA application to DRAM production was proposed. It is believed that the main GIDL-impacted factor was the high electric field caused by defect-assisted tunneling and junction profile abruptness under the gate edge. Bright field and weak-beam dark-field TEM images showed perfect dislocation loops and fault dislocation loops staying in the {113} plane with a size of around 17 x 20 nm in the junction area. These defects could be one of the leakage sources for a defect-assisted trap charge, leading to trap-assisted tunneling.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2022689</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Applied sciences ; Arrays ; Design. Technologies. Operation analysis. Testing ; Devices ; Dislocation loops ; Dynamic random access memory ; Electrical junctions ; Electronics ; Exact sciences and technology ; Gate-induced drain leakage (GIDL) ; Implants ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Junctions ; Leakage ; Logic gates ; millisecond Flash anneal (MFLA) ; Random access memory ; Resistance ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; submelt laser anneal (LSA) ; Tunneling</subject><ispartof>IEEE transactions on electron devices, 2009-08, Vol.56 (8), p.1608-1617</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-9edbe4a39849f304f24865a862a0148388a174a7f6debcfeb5399b25dab910443</citedby><cites>FETCH-LOGICAL-c352t-9edbe4a39849f304f24865a862a0148388a174a7f6debcfeb5399b25dab910443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5159449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5159449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21884639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shian-Jyh Lin</creatorcontrib><creatorcontrib>Chao-Sung Lai</creatorcontrib><creatorcontrib>Yi-Jung Chen</creatorcontrib><creatorcontrib>Sheng-Tsung Chen</creatorcontrib><creatorcontrib>Chia Chuan Hsu</creatorcontrib><creatorcontrib>Huang, B.</creatorcontrib><creatorcontrib>Chuang, G.</creatorcontrib><creatorcontrib>Neng-Tai Shih</creatorcontrib><creatorcontrib>Chung-Yuan Lee</creatorcontrib><creatorcontrib>Pei-Ing Lee</creatorcontrib><title>Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential for DRAM application. The periphery NMOS off current was reduced by 36%. This off-current improvement reduced the standby current by 5% in a DRAM functional test. The GIDL reductions for an NMOS array and periphery N- and PMOSs were 14.5%, 15%, and 39%, respectively. A model for GIDL improvement by MFLA application to DRAM production was proposed. It is believed that the main GIDL-impacted factor was the high electric field caused by defect-assisted tunneling and junction profile abruptness under the gate edge. Bright field and weak-beam dark-field TEM images showed perfect dislocation loops and fault dislocation loops staying in the {113} plane with a size of around 17 x 20 nm in the junction area. These defects could be one of the leakage sources for a defect-assisted trap charge, leading to trap-assisted tunneling.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Dislocation loops</subject><subject>Dynamic random access memory</subject><subject>Electrical junctions</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gate-induced drain leakage (GIDL)</subject><subject>Implants</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Junctions</subject><subject>Leakage</subject><subject>Logic gates</subject><subject>millisecond Flash anneal (MFLA)</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>submelt laser anneal (LSA)</subject><subject>Tunneling</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM2LFDEQxRtRcFy9C16CILt76DVfnUmOzc7OONCDIOs5VKerNWsmPSY9gv-9GWbYg5cqivq9x-NV1XtG7xij5vPjw-qOU2rK4Fxp86JasKZZ1kZJ9bJaUMp0bYQWr6s3OT-VU0nJFxVuYMZ6G4ejw4GsEvhIOoRf8APJzWa76m7Jdn9I0x_cY5zJOCWy8yH4jG6KA1kHyD9JGyNCIDe7ddfekuKw-tbuSHs4BO9g9lN8W70aIWR8d9lX1ff1w-P9l7r7utnet13tRMPn2uDQowRhtDSjoHLkUqsGtOJAmdRCa2BLCctRDdi7EftGGNPzZoDeMCqluKquz74l8e8j5tnufXYYAkScjtlqVay5WNJCfvyPfJqOKZZwVjfKcK2oLhA9Qy5NOScc7SH5PaS_llF7at2W1u2pdXtpvUg-XXwhOwhjguh8ftZxprVU4sR9OHMeEZ_fDWuMlEb8A9d-h3I</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Shian-Jyh Lin</creator><creator>Chao-Sung Lai</creator><creator>Yi-Jung Chen</creator><creator>Sheng-Tsung Chen</creator><creator>Chia Chuan Hsu</creator><creator>Huang, B.</creator><creator>Chuang, G.</creator><creator>Neng-Tai Shih</creator><creator>Chung-Yuan Lee</creator><creator>Pei-Ing Lee</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090801</creationdate><title>Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application</title><author>Shian-Jyh Lin ; Chao-Sung Lai ; Yi-Jung Chen ; Sheng-Tsung Chen ; Chia Chuan Hsu ; Huang, B. ; Chuang, G. ; Neng-Tai Shih ; Chung-Yuan Lee ; Pei-Ing Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-9edbe4a39849f304f24865a862a0148388a174a7f6debcfeb5399b25dab910443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Dislocation loops</topic><topic>Dynamic random access memory</topic><topic>Electrical junctions</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gate-induced drain leakage (GIDL)</topic><topic>Implants</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Junctions</topic><topic>Leakage</topic><topic>Logic gates</topic><topic>millisecond Flash anneal (MFLA)</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>submelt laser anneal (LSA)</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shian-Jyh Lin</creatorcontrib><creatorcontrib>Chao-Sung Lai</creatorcontrib><creatorcontrib>Yi-Jung Chen</creatorcontrib><creatorcontrib>Sheng-Tsung Chen</creatorcontrib><creatorcontrib>Chia Chuan Hsu</creatorcontrib><creatorcontrib>Huang, B.</creatorcontrib><creatorcontrib>Chuang, G.</creatorcontrib><creatorcontrib>Neng-Tai Shih</creatorcontrib><creatorcontrib>Chung-Yuan Lee</creatorcontrib><creatorcontrib>Pei-Ing Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shian-Jyh Lin</au><au>Chao-Sung Lai</au><au>Yi-Jung Chen</au><au>Sheng-Tsung Chen</au><au>Chia Chuan Hsu</au><au>Huang, B.</au><au>Chuang, G.</au><au>Neng-Tai Shih</au><au>Chung-Yuan Lee</au><au>Pei-Ing Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>56</volume><issue>8</issue><spage>1608</spage><epage>1617</epage><pages>1608-1617</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential for DRAM application. The periphery NMOS off current was reduced by 36%. This off-current improvement reduced the standby current by 5% in a DRAM functional test. The GIDL reductions for an NMOS array and periphery N- and PMOSs were 14.5%, 15%, and 39%, respectively. A model for GIDL improvement by MFLA application to DRAM production was proposed. It is believed that the main GIDL-impacted factor was the high electric field caused by defect-assisted tunneling and junction profile abruptness under the gate edge. Bright field and weak-beam dark-field TEM images showed perfect dislocation loops and fault dislocation loops staying in the {113} plane with a size of around 17 x 20 nm in the junction area. These defects could be one of the leakage sources for a defect-assisted trap charge, leading to trap-assisted tunneling.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2022689</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2009-08, Vol.56 (8), p.1608-1617
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2009_2022689
source IEEE Electronic Library (IEL)
subjects Annealing
Applied sciences
Arrays
Design. Technologies. Operation analysis. Testing
Devices
Dislocation loops
Dynamic random access memory
Electrical junctions
Electronics
Exact sciences and technology
Gate-induced drain leakage (GIDL)
Implants
Integrated circuits
Integrated circuits by function (including memories and processors)
Junctions
Leakage
Logic gates
millisecond Flash anneal (MFLA)
Random access memory
Resistance
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
submelt laser anneal (LSA)
Tunneling
title Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-Induced%20Drain%20Leakage%20(GIDL)%20Improvement%20for%20Millisecond%20Flash%20Anneal%20(MFLA)%20in%20DRAM%20Application&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shian-Jyh%20Lin&rft.date=2009-08-01&rft.volume=56&rft.issue=8&rft.spage=1608&rft.epage=1617&rft.pages=1608-1617&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2022689&rft_dat=%3Cproquest_RIE%3E2292068891%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856928608&rft_id=info:pmid/&rft_ieee_id=5159449&rfr_iscdi=true