Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application
In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2009-08, Vol.56 (8), p.1608-1617 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1617 |
---|---|
container_issue | 8 |
container_start_page | 1608 |
container_title | IEEE transactions on electron devices |
container_volume | 56 |
creator | Shian-Jyh Lin Chao-Sung Lai Yi-Jung Chen Sheng-Tsung Chen Chia Chuan Hsu Huang, B. Chuang, G. Neng-Tai Shih Chung-Yuan Lee Pei-Ing Lee |
description | In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential for DRAM application. The periphery NMOS off current was reduced by 36%. This off-current improvement reduced the standby current by 5% in a DRAM functional test. The GIDL reductions for an NMOS array and periphery N- and PMOSs were 14.5%, 15%, and 39%, respectively. A model for GIDL improvement by MFLA application to DRAM production was proposed. It is believed that the main GIDL-impacted factor was the high electric field caused by defect-assisted tunneling and junction profile abruptness under the gate edge. Bright field and weak-beam dark-field TEM images showed perfect dislocation loops and fault dislocation loops staying in the {113} plane with a size of around 17 x 20 nm in the junction area. These defects could be one of the leakage sources for a defect-assisted trap charge, leading to trap-assisted tunneling. |
doi_str_mv | 10.1109/TED.2009.2022689 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2009_2022689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5159449</ieee_id><sourcerecordid>2292068891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-9edbe4a39849f304f24865a862a0148388a174a7f6debcfeb5399b25dab910443</originalsourceid><addsrcrecordid>eNpdkM2LFDEQxRtRcFy9C16CILt76DVfnUmOzc7OONCDIOs5VKerNWsmPSY9gv-9GWbYg5cqivq9x-NV1XtG7xij5vPjw-qOU2rK4Fxp86JasKZZ1kZJ9bJaUMp0bYQWr6s3OT-VU0nJFxVuYMZ6G4ejw4GsEvhIOoRf8APJzWa76m7Jdn9I0x_cY5zJOCWy8yH4jG6KA1kHyD9JGyNCIDe7ddfekuKw-tbuSHs4BO9g9lN8W70aIWR8d9lX1ff1w-P9l7r7utnet13tRMPn2uDQowRhtDSjoHLkUqsGtOJAmdRCa2BLCctRDdi7EftGGNPzZoDeMCqluKquz74l8e8j5tnufXYYAkScjtlqVay5WNJCfvyPfJqOKZZwVjfKcK2oLhA9Qy5NOScc7SH5PaS_llF7at2W1u2pdXtpvUg-XXwhOwhjguh8ftZxprVU4sR9OHMeEZ_fDWuMlEb8A9d-h3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856928608</pqid></control><display><type>article</type><title>Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application</title><source>IEEE Electronic Library (IEL)</source><creator>Shian-Jyh Lin ; Chao-Sung Lai ; Yi-Jung Chen ; Sheng-Tsung Chen ; Chia Chuan Hsu ; Huang, B. ; Chuang, G. ; Neng-Tai Shih ; Chung-Yuan Lee ; Pei-Ing Lee</creator><creatorcontrib>Shian-Jyh Lin ; Chao-Sung Lai ; Yi-Jung Chen ; Sheng-Tsung Chen ; Chia Chuan Hsu ; Huang, B. ; Chuang, G. ; Neng-Tai Shih ; Chung-Yuan Lee ; Pei-Ing Lee</creatorcontrib><description>In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential for DRAM application. The periphery NMOS off current was reduced by 36%. This off-current improvement reduced the standby current by 5% in a DRAM functional test. The GIDL reductions for an NMOS array and periphery N- and PMOSs were 14.5%, 15%, and 39%, respectively. A model for GIDL improvement by MFLA application to DRAM production was proposed. It is believed that the main GIDL-impacted factor was the high electric field caused by defect-assisted tunneling and junction profile abruptness under the gate edge. Bright field and weak-beam dark-field TEM images showed perfect dislocation loops and fault dislocation loops staying in the {113} plane with a size of around 17 x 20 nm in the junction area. These defects could be one of the leakage sources for a defect-assisted trap charge, leading to trap-assisted tunneling.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2022689</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Applied sciences ; Arrays ; Design. Technologies. Operation analysis. Testing ; Devices ; Dislocation loops ; Dynamic random access memory ; Electrical junctions ; Electronics ; Exact sciences and technology ; Gate-induced drain leakage (GIDL) ; Implants ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Junctions ; Leakage ; Logic gates ; millisecond Flash anneal (MFLA) ; Random access memory ; Resistance ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; submelt laser anneal (LSA) ; Tunneling</subject><ispartof>IEEE transactions on electron devices, 2009-08, Vol.56 (8), p.1608-1617</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-9edbe4a39849f304f24865a862a0148388a174a7f6debcfeb5399b25dab910443</citedby><cites>FETCH-LOGICAL-c352t-9edbe4a39849f304f24865a862a0148388a174a7f6debcfeb5399b25dab910443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5159449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5159449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21884639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shian-Jyh Lin</creatorcontrib><creatorcontrib>Chao-Sung Lai</creatorcontrib><creatorcontrib>Yi-Jung Chen</creatorcontrib><creatorcontrib>Sheng-Tsung Chen</creatorcontrib><creatorcontrib>Chia Chuan Hsu</creatorcontrib><creatorcontrib>Huang, B.</creatorcontrib><creatorcontrib>Chuang, G.</creatorcontrib><creatorcontrib>Neng-Tai Shih</creatorcontrib><creatorcontrib>Chung-Yuan Lee</creatorcontrib><creatorcontrib>Pei-Ing Lee</creatorcontrib><title>Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential for DRAM application. The periphery NMOS off current was reduced by 36%. This off-current improvement reduced the standby current by 5% in a DRAM functional test. The GIDL reductions for an NMOS array and periphery N- and PMOSs were 14.5%, 15%, and 39%, respectively. A model for GIDL improvement by MFLA application to DRAM production was proposed. It is believed that the main GIDL-impacted factor was the high electric field caused by defect-assisted tunneling and junction profile abruptness under the gate edge. Bright field and weak-beam dark-field TEM images showed perfect dislocation loops and fault dislocation loops staying in the {113} plane with a size of around 17 x 20 nm in the junction area. These defects could be one of the leakage sources for a defect-assisted trap charge, leading to trap-assisted tunneling.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Dislocation loops</subject><subject>Dynamic random access memory</subject><subject>Electrical junctions</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gate-induced drain leakage (GIDL)</subject><subject>Implants</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Junctions</subject><subject>Leakage</subject><subject>Logic gates</subject><subject>millisecond Flash anneal (MFLA)</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>submelt laser anneal (LSA)</subject><subject>Tunneling</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM2LFDEQxRtRcFy9C16CILt76DVfnUmOzc7OONCDIOs5VKerNWsmPSY9gv-9GWbYg5cqivq9x-NV1XtG7xij5vPjw-qOU2rK4Fxp86JasKZZ1kZJ9bJaUMp0bYQWr6s3OT-VU0nJFxVuYMZ6G4ejw4GsEvhIOoRf8APJzWa76m7Jdn9I0x_cY5zJOCWy8yH4jG6KA1kHyD9JGyNCIDe7ddfekuKw-tbuSHs4BO9g9lN8W70aIWR8d9lX1ff1w-P9l7r7utnet13tRMPn2uDQowRhtDSjoHLkUqsGtOJAmdRCa2BLCctRDdi7EftGGNPzZoDeMCqluKquz74l8e8j5tnufXYYAkScjtlqVay5WNJCfvyPfJqOKZZwVjfKcK2oLhA9Qy5NOScc7SH5PaS_llF7at2W1u2pdXtpvUg-XXwhOwhjguh8ftZxprVU4sR9OHMeEZ_fDWuMlEb8A9d-h3I</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Shian-Jyh Lin</creator><creator>Chao-Sung Lai</creator><creator>Yi-Jung Chen</creator><creator>Sheng-Tsung Chen</creator><creator>Chia Chuan Hsu</creator><creator>Huang, B.</creator><creator>Chuang, G.</creator><creator>Neng-Tai Shih</creator><creator>Chung-Yuan Lee</creator><creator>Pei-Ing Lee</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090801</creationdate><title>Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application</title><author>Shian-Jyh Lin ; Chao-Sung Lai ; Yi-Jung Chen ; Sheng-Tsung Chen ; Chia Chuan Hsu ; Huang, B. ; Chuang, G. ; Neng-Tai Shih ; Chung-Yuan Lee ; Pei-Ing Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-9edbe4a39849f304f24865a862a0148388a174a7f6debcfeb5399b25dab910443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Dislocation loops</topic><topic>Dynamic random access memory</topic><topic>Electrical junctions</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gate-induced drain leakage (GIDL)</topic><topic>Implants</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Junctions</topic><topic>Leakage</topic><topic>Logic gates</topic><topic>millisecond Flash anneal (MFLA)</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>submelt laser anneal (LSA)</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shian-Jyh Lin</creatorcontrib><creatorcontrib>Chao-Sung Lai</creatorcontrib><creatorcontrib>Yi-Jung Chen</creatorcontrib><creatorcontrib>Sheng-Tsung Chen</creatorcontrib><creatorcontrib>Chia Chuan Hsu</creatorcontrib><creatorcontrib>Huang, B.</creatorcontrib><creatorcontrib>Chuang, G.</creatorcontrib><creatorcontrib>Neng-Tai Shih</creatorcontrib><creatorcontrib>Chung-Yuan Lee</creatorcontrib><creatorcontrib>Pei-Ing Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shian-Jyh Lin</au><au>Chao-Sung Lai</au><au>Yi-Jung Chen</au><au>Sheng-Tsung Chen</au><au>Chia Chuan Hsu</au><au>Huang, B.</au><au>Chuang, G.</au><au>Neng-Tai Shih</au><au>Chung-Yuan Lee</au><au>Pei-Ing Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>56</volume><issue>8</issue><spage>1608</spage><epage>1617</epage><pages>1608-1617</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, we successfully demonstrated gate-induced drain leakage (GIDL) improvements by millisecond flash anneal (MFLA) on a DRAM product. Fundamental studies on blanket wafers and the device characteristics of product wafers showed positive results. These proved that MLFA has good potential for DRAM application. The periphery NMOS off current was reduced by 36%. This off-current improvement reduced the standby current by 5% in a DRAM functional test. The GIDL reductions for an NMOS array and periphery N- and PMOSs were 14.5%, 15%, and 39%, respectively. A model for GIDL improvement by MFLA application to DRAM production was proposed. It is believed that the main GIDL-impacted factor was the high electric field caused by defect-assisted tunneling and junction profile abruptness under the gate edge. Bright field and weak-beam dark-field TEM images showed perfect dislocation loops and fault dislocation loops staying in the {113} plane with a size of around 17 x 20 nm in the junction area. These defects could be one of the leakage sources for a defect-assisted trap charge, leading to trap-assisted tunneling.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2022689</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2009-08, Vol.56 (8), p.1608-1617 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2009_2022689 |
source | IEEE Electronic Library (IEL) |
subjects | Annealing Applied sciences Arrays Design. Technologies. Operation analysis. Testing Devices Dislocation loops Dynamic random access memory Electrical junctions Electronics Exact sciences and technology Gate-induced drain leakage (GIDL) Implants Integrated circuits Integrated circuits by function (including memories and processors) Junctions Leakage Logic gates millisecond Flash anneal (MFLA) Random access memory Resistance Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices submelt laser anneal (LSA) Tunneling |
title | Gate-Induced Drain Leakage (GIDL) Improvement for Millisecond Flash Anneal (MFLA) in DRAM Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-Induced%20Drain%20Leakage%20(GIDL)%20Improvement%20for%20Millisecond%20Flash%20Anneal%20(MFLA)%20in%20DRAM%20Application&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shian-Jyh%20Lin&rft.date=2009-08-01&rft.volume=56&rft.issue=8&rft.spage=1608&rft.epage=1617&rft.pages=1608-1617&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2022689&rft_dat=%3Cproquest_RIE%3E2292068891%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856928608&rft_id=info:pmid/&rft_ieee_id=5159449&rfr_iscdi=true |