Phase-Shifted Traveling-Wave-Tube Circuit for Ultrawideband High-Power Submillimeter-Wave Generation

A novel slow-wave vacuum electron device circuit, consisting of a half-period-staggered double-vane array and a high-aspect ratio sheet electron beam, has been conceived for a high-power wideband submillimeter-wave generation. A particle-in-cell simulation, which is based on a finite-difference time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2009-05, Vol.56 (5), p.706-712
Hauptverfasser: Young-Min Shin, Barnett, L.R., Luhmann, N.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue 5
container_start_page 706
container_title IEEE transactions on electron devices
container_volume 56
creator Young-Min Shin
Barnett, L.R.
Luhmann, N.C.
description A novel slow-wave vacuum electron device circuit, consisting of a half-period-staggered double-vane array and a high-aspect ratio sheet electron beam, has been conceived for a high-power wideband submillimeter-wave generation. A particle-in-cell simulation, which is based on a finite-difference time-domain algorithm, has shown that this circuit has a very wide intrinsic bandwidth (in excess of 50 GHz around the operating frequency of 220 GHz) with a moderate gain of 13 dB/cm. Moreover, the saturated conversion efficiency is predicted to be 3%-5.5% over the operating band corresponding to an output power of 150-275 W, assuming a beam power of 5 kW. Of particular importance, this structure is based on the TE-fundamental mode interaction, thereby avoiding the complex over moding instabilities that usually cause spurious signal oscillation in conventional high-aspect-ratio structures. This planar circuit has simple 2-D geometry that is thermally and mechanically robust as well as being compatible with conventional microfabrication techniques. This concept is expected to open numerous opportunities in potential applications of versatile electronic devices in the low-millimeter- and submillimeter-wave regions.
doi_str_mv 10.1109/TED.2009.2015404
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2009_2015404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4810128</ieee_id><sourcerecordid>2292066371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-5298b009b0140bc0e3470e1df08731248b1302c169fdb46cc695935558c627403</originalsourceid><addsrcrecordid>eNpdkMtLxDAQh4MouD7ugpfiyUt08mxylHV9gODCrngMbTp1I91Wk1bxv7frigcvmQx8v2HmI-SEwQVjYC-Xs-sLDmDHhykJcodMmFI5tVrqXTIBYIZaYcQ-OUjpdWy1lHxCqvmqSEgXq1D3WGXLWHxgE9oX-jx-6HIoMZuG6IfQZ3UXs6emj8VnqLAs2iq7Cy8rOu8-MWaLoVyHpglr7DH-hLNbbDEWfejaI7JXF03C4996SJ5uZsvpHX14vL2fXj1QL7joqeLWlOMJJTAJpQcUMgdkVQ0mF4xLUzIB3DNt66qU2nttlRVKKeM1zyWIQ3K-nfsWu_cBU-_WIXlsmqLFbkiO6ZwJBcpu0LN_6Gs3xHbczhmlLTdg8xGCLeRjl1LE2r3FsC7il2PgNtbdaN1trLtf62PkdBsJiPiHS8OAcSO-AQgdfBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856928097</pqid></control><display><type>article</type><title>Phase-Shifted Traveling-Wave-Tube Circuit for Ultrawideband High-Power Submillimeter-Wave Generation</title><source>IEEE Electronic Library (IEL)</source><creator>Young-Min Shin ; Barnett, L.R. ; Luhmann, N.C.</creator><creatorcontrib>Young-Min Shin ; Barnett, L.R. ; Luhmann, N.C.</creatorcontrib><description>A novel slow-wave vacuum electron device circuit, consisting of a half-period-staggered double-vane array and a high-aspect ratio sheet electron beam, has been conceived for a high-power wideband submillimeter-wave generation. A particle-in-cell simulation, which is based on a finite-difference time-domain algorithm, has shown that this circuit has a very wide intrinsic bandwidth (in excess of 50 GHz around the operating frequency of 220 GHz) with a moderate gain of 13 dB/cm. Moreover, the saturated conversion efficiency is predicted to be 3%-5.5% over the operating band corresponding to an output power of 150-275 W, assuming a beam power of 5 kW. Of particular importance, this structure is based on the TE-fundamental mode interaction, thereby avoiding the complex over moding instabilities that usually cause spurious signal oscillation in conventional high-aspect-ratio structures. This planar circuit has simple 2-D geometry that is thermally and mechanically robust as well as being compatible with conventional microfabrication techniques. This concept is expected to open numerous opportunities in potential applications of versatile electronic devices in the low-millimeter- and submillimeter-wave regions.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2015404</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Bandwidth ; Beams (radiation) ; Blades ; Circuits ; Computer simulation ; Devices ; Dispersion ; Electron beams ; Finite-difference time domain (FDTD) ; half-period staggering ; Instability ; Integrated circuit modeling ; microfabrication ; Oscillations ; Passband ; Radio frequency ; slow wave ; submillimeter ; vacuum electron device (VED)</subject><ispartof>IEEE transactions on electron devices, 2009-05, Vol.56 (5), p.706-712</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-5298b009b0140bc0e3470e1df08731248b1302c169fdb46cc695935558c627403</citedby><cites>FETCH-LOGICAL-c323t-5298b009b0140bc0e3470e1df08731248b1302c169fdb46cc695935558c627403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4810128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4810128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Young-Min Shin</creatorcontrib><creatorcontrib>Barnett, L.R.</creatorcontrib><creatorcontrib>Luhmann, N.C.</creatorcontrib><title>Phase-Shifted Traveling-Wave-Tube Circuit for Ultrawideband High-Power Submillimeter-Wave Generation</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A novel slow-wave vacuum electron device circuit, consisting of a half-period-staggered double-vane array and a high-aspect ratio sheet electron beam, has been conceived for a high-power wideband submillimeter-wave generation. A particle-in-cell simulation, which is based on a finite-difference time-domain algorithm, has shown that this circuit has a very wide intrinsic bandwidth (in excess of 50 GHz around the operating frequency of 220 GHz) with a moderate gain of 13 dB/cm. Moreover, the saturated conversion efficiency is predicted to be 3%-5.5% over the operating band corresponding to an output power of 150-275 W, assuming a beam power of 5 kW. Of particular importance, this structure is based on the TE-fundamental mode interaction, thereby avoiding the complex over moding instabilities that usually cause spurious signal oscillation in conventional high-aspect-ratio structures. This planar circuit has simple 2-D geometry that is thermally and mechanically robust as well as being compatible with conventional microfabrication techniques. This concept is expected to open numerous opportunities in potential applications of versatile electronic devices in the low-millimeter- and submillimeter-wave regions.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Bandwidth</subject><subject>Beams (radiation)</subject><subject>Blades</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Devices</subject><subject>Dispersion</subject><subject>Electron beams</subject><subject>Finite-difference time domain (FDTD)</subject><subject>half-period staggering</subject><subject>Instability</subject><subject>Integrated circuit modeling</subject><subject>microfabrication</subject><subject>Oscillations</subject><subject>Passband</subject><subject>Radio frequency</subject><subject>slow wave</subject><subject>submillimeter</subject><subject>vacuum electron device (VED)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLxDAQh4MouD7ugpfiyUt08mxylHV9gODCrngMbTp1I91Wk1bxv7frigcvmQx8v2HmI-SEwQVjYC-Xs-sLDmDHhykJcodMmFI5tVrqXTIBYIZaYcQ-OUjpdWy1lHxCqvmqSEgXq1D3WGXLWHxgE9oX-jx-6HIoMZuG6IfQZ3UXs6emj8VnqLAs2iq7Cy8rOu8-MWaLoVyHpglr7DH-hLNbbDEWfejaI7JXF03C4996SJ5uZsvpHX14vL2fXj1QL7joqeLWlOMJJTAJpQcUMgdkVQ0mF4xLUzIB3DNt66qU2nttlRVKKeM1zyWIQ3K-nfsWu_cBU-_WIXlsmqLFbkiO6ZwJBcpu0LN_6Gs3xHbczhmlLTdg8xGCLeRjl1LE2r3FsC7il2PgNtbdaN1trLtf62PkdBsJiPiHS8OAcSO-AQgdfBY</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Young-Min Shin</creator><creator>Barnett, L.R.</creator><creator>Luhmann, N.C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090501</creationdate><title>Phase-Shifted Traveling-Wave-Tube Circuit for Ultrawideband High-Power Submillimeter-Wave Generation</title><author>Young-Min Shin ; Barnett, L.R. ; Luhmann, N.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-5298b009b0140bc0e3470e1df08731248b1302c169fdb46cc695935558c627403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Bandwidth</topic><topic>Beams (radiation)</topic><topic>Blades</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Devices</topic><topic>Dispersion</topic><topic>Electron beams</topic><topic>Finite-difference time domain (FDTD)</topic><topic>half-period staggering</topic><topic>Instability</topic><topic>Integrated circuit modeling</topic><topic>microfabrication</topic><topic>Oscillations</topic><topic>Passband</topic><topic>Radio frequency</topic><topic>slow wave</topic><topic>submillimeter</topic><topic>vacuum electron device (VED)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young-Min Shin</creatorcontrib><creatorcontrib>Barnett, L.R.</creatorcontrib><creatorcontrib>Luhmann, N.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Young-Min Shin</au><au>Barnett, L.R.</au><au>Luhmann, N.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Shifted Traveling-Wave-Tube Circuit for Ultrawideband High-Power Submillimeter-Wave Generation</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>56</volume><issue>5</issue><spage>706</spage><epage>712</epage><pages>706-712</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A novel slow-wave vacuum electron device circuit, consisting of a half-period-staggered double-vane array and a high-aspect ratio sheet electron beam, has been conceived for a high-power wideband submillimeter-wave generation. A particle-in-cell simulation, which is based on a finite-difference time-domain algorithm, has shown that this circuit has a very wide intrinsic bandwidth (in excess of 50 GHz around the operating frequency of 220 GHz) with a moderate gain of 13 dB/cm. Moreover, the saturated conversion efficiency is predicted to be 3%-5.5% over the operating band corresponding to an output power of 150-275 W, assuming a beam power of 5 kW. Of particular importance, this structure is based on the TE-fundamental mode interaction, thereby avoiding the complex over moding instabilities that usually cause spurious signal oscillation in conventional high-aspect-ratio structures. This planar circuit has simple 2-D geometry that is thermally and mechanically robust as well as being compatible with conventional microfabrication techniques. This concept is expected to open numerous opportunities in potential applications of versatile electronic devices in the low-millimeter- and submillimeter-wave regions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2015404</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2009-05, Vol.56 (5), p.706-712
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2009_2015404
source IEEE Electronic Library (IEL)
subjects Algorithms
Arrays
Bandwidth
Beams (radiation)
Blades
Circuits
Computer simulation
Devices
Dispersion
Electron beams
Finite-difference time domain (FDTD)
half-period staggering
Instability
Integrated circuit modeling
microfabrication
Oscillations
Passband
Radio frequency
slow wave
submillimeter
vacuum electron device (VED)
title Phase-Shifted Traveling-Wave-Tube Circuit for Ultrawideband High-Power Submillimeter-Wave Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Shifted%20Traveling-Wave-Tube%20Circuit%20for%20Ultrawideband%20High-Power%20Submillimeter-Wave%20Generation&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Young-Min%20Shin&rft.date=2009-05-01&rft.volume=56&rft.issue=5&rft.spage=706&rft.epage=712&rft.pages=706-712&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2015404&rft_dat=%3Cproquest_RIE%3E2292066371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856928097&rft_id=info:pmid/&rft_ieee_id=4810128&rfr_iscdi=true