Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs

This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2009-02, Vol.56 (2), p.299-305
Hauptverfasser: Ming-Hsiang Cho, Chen, D., Lee, R., An-Sam Peng, Lin-Kun Wu, Chune-Sin Yeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 2
container_start_page 299
container_title IEEE transactions on electron devices
container_volume 56
creator Ming-Hsiang Cho
Chen, D.
Lee, R.
An-Sam Peng
Lin-Kun Wu
Chune-Sin Yeh
description This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru¿ dummy structure on a wafer to remove the feeding networks with arbitrary geometry surrounding the MOS transistors. The shielding technique is employed to improve the substrate isolation and fixture scalability. To mitigate the parasitic effects of the dangling leg between the MOSFET and the ground plane, microstriplike interconnects are introduced to mount the devices. Full-wave electromagnetic simulations were also accomplished to substantiate the interconnect scalability and network combinations. The MOS transistors and deembedding dummy patterns were implemented in a 0.13-¿m standard CMOS technology and characterized up to 30 GHz. Compared with the conventional deembedding methods, the proposed approach consumes less than 33% of chip area and characterization time for modeling test keys, while still maintaining high accuracy.
doi_str_mv 10.1109/TED.2008.2011685
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2008_2011685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4752730</ieee_id><sourcerecordid>869844136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-33aae74c2fabf5094e9e574413fddc0604757ca3dddf87efd8a1636cc6ee20893</originalsourceid><addsrcrecordid>eNp9kctrVDEYxYMoOLbuBTdB0K5uzevmsZTpQ6HDCK24DJnkS5ty56YmdyzTv94MM3ThopuEJL9z-HIOQh8oOaWUmK8352enjBDdFkql7l-hGe171Rkp5Gs0I4TqznDN36J3td63oxSCzVC8hLyGqWy7a-8GtxoA_3TF1TQlj88A1isIIY23eAHTXQ55yLdbHHPBy7H77SIUvEi-5Ef3F_D8rin9BCU9uSnlEeeIF8vri_ObeozeRDdUeH_Yj9Cvdj3_3l0tL3_Mv111vo02dZw7B0p4Ft0q9sQIMNArISiPIXgiiVC98o6HEKJWEIN2VHLpvQRgRBt-hE72vg8l_9lAnew6VQ_D4EbIm2q1NHpnJxv55UWSi55QbngDP_0H3udNGdsvrO6lYYoK1SCyh1oWtRaI9qGktStbS4nd9WNbP3bXjz300ySfD76utuhjcaNP9VnHKOeKCda4j3suAcDzcwuCKU74P0EemLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856927147</pqid></control><display><type>article</type><title>Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Ming-Hsiang Cho ; Chen, D. ; Lee, R. ; An-Sam Peng ; Lin-Kun Wu ; Chune-Sin Yeh</creator><creatorcontrib>Ming-Hsiang Cho ; Chen, D. ; Lee, R. ; An-Sam Peng ; Lin-Kun Wu ; Chune-Sin Yeh</creatorcontrib><description>This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru¿ dummy structure on a wafer to remove the feeding networks with arbitrary geometry surrounding the MOS transistors. The shielding technique is employed to improve the substrate isolation and fixture scalability. To mitigate the parasitic effects of the dangling leg between the MOSFET and the ground plane, microstriplike interconnects are introduced to mount the devices. Full-wave electromagnetic simulations were also accomplished to substantiate the interconnect scalability and network combinations. The MOS transistors and deembedding dummy patterns were implemented in a 0.13-¿m standard CMOS technology and characterized up to 30 GHz. Compared with the conventional deembedding methods, the proposed approach consumes less than 33% of chip area and characterization time for modeling test keys, while still maintaining high accuracy.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2008.2011685</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Deembedding ; Design. Technologies. Operation analysis. Testing ; Devices ; Dummies ; Electronics ; Exact sciences and technology ; Fixtures ; Geometry ; Integrated circuit modeling ; Integrated circuits ; Mathematics ; Metal oxide semiconductors ; Methodology ; Microstrip ; Microwave and submillimeter wave devices, electron transfer devices ; microwave measurements ; Microwave theory and techniques ; Microwave transistors ; modeling ; MOSFETs ; Networks ; parasitics ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Transistors ; Transmission line matrix methods</subject><ispartof>IEEE transactions on electron devices, 2009-02, Vol.56 (2), p.299-305</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-33aae74c2fabf5094e9e574413fddc0604757ca3dddf87efd8a1636cc6ee20893</citedby><cites>FETCH-LOGICAL-c383t-33aae74c2fabf5094e9e574413fddc0604757ca3dddf87efd8a1636cc6ee20893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4752730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4752730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21337242$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ming-Hsiang Cho</creatorcontrib><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Lee, R.</creatorcontrib><creatorcontrib>An-Sam Peng</creatorcontrib><creatorcontrib>Lin-Kun Wu</creatorcontrib><creatorcontrib>Chune-Sin Yeh</creatorcontrib><title>Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru¿ dummy structure on a wafer to remove the feeding networks with arbitrary geometry surrounding the MOS transistors. The shielding technique is employed to improve the substrate isolation and fixture scalability. To mitigate the parasitic effects of the dangling leg between the MOSFET and the ground plane, microstriplike interconnects are introduced to mount the devices. Full-wave electromagnetic simulations were also accomplished to substantiate the interconnect scalability and network combinations. The MOS transistors and deembedding dummy patterns were implemented in a 0.13-¿m standard CMOS technology and characterized up to 30 GHz. Compared with the conventional deembedding methods, the proposed approach consumes less than 33% of chip area and characterization time for modeling test keys, while still maintaining high accuracy.</description><subject>Applied sciences</subject><subject>Deembedding</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Dummies</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fixtures</subject><subject>Geometry</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Mathematics</subject><subject>Metal oxide semiconductors</subject><subject>Methodology</subject><subject>Microstrip</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>microwave measurements</subject><subject>Microwave theory and techniques</subject><subject>Microwave transistors</subject><subject>modeling</subject><subject>MOSFETs</subject><subject>Networks</subject><subject>parasitics</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Transistors</subject><subject>Transmission line matrix methods</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctrVDEYxYMoOLbuBTdB0K5uzevmsZTpQ6HDCK24DJnkS5ty56YmdyzTv94MM3ThopuEJL9z-HIOQh8oOaWUmK8352enjBDdFkql7l-hGe171Rkp5Gs0I4TqznDN36J3td63oxSCzVC8hLyGqWy7a-8GtxoA_3TF1TQlj88A1isIIY23eAHTXQ55yLdbHHPBy7H77SIUvEi-5Ef3F_D8rin9BCU9uSnlEeeIF8vri_ObeozeRDdUeH_Yj9Cvdj3_3l0tL3_Mv111vo02dZw7B0p4Ft0q9sQIMNArISiPIXgiiVC98o6HEKJWEIN2VHLpvQRgRBt-hE72vg8l_9lAnew6VQ_D4EbIm2q1NHpnJxv55UWSi55QbngDP_0H3udNGdsvrO6lYYoK1SCyh1oWtRaI9qGktStbS4nd9WNbP3bXjz300ySfD76utuhjcaNP9VnHKOeKCda4j3suAcDzcwuCKU74P0EemLw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Ming-Hsiang Cho</creator><creator>Chen, D.</creator><creator>Lee, R.</creator><creator>An-Sam Peng</creator><creator>Lin-Kun Wu</creator><creator>Chune-Sin Yeh</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs</title><author>Ming-Hsiang Cho ; Chen, D. ; Lee, R. ; An-Sam Peng ; Lin-Kun Wu ; Chune-Sin Yeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-33aae74c2fabf5094e9e574413fddc0604757ca3dddf87efd8a1636cc6ee20893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Deembedding</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Dummies</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fixtures</topic><topic>Geometry</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Mathematics</topic><topic>Metal oxide semiconductors</topic><topic>Methodology</topic><topic>Microstrip</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>microwave measurements</topic><topic>Microwave theory and techniques</topic><topic>Microwave transistors</topic><topic>modeling</topic><topic>MOSFETs</topic><topic>Networks</topic><topic>parasitics</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Transistors</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming-Hsiang Cho</creatorcontrib><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Lee, R.</creatorcontrib><creatorcontrib>An-Sam Peng</creatorcontrib><creatorcontrib>Lin-Kun Wu</creatorcontrib><creatorcontrib>Chune-Sin Yeh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ming-Hsiang Cho</au><au>Chen, D.</au><au>Lee, R.</au><au>An-Sam Peng</au><au>Lin-Kun Wu</au><au>Chune-Sin Yeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>56</volume><issue>2</issue><spage>299</spage><epage>305</epage><pages>299-305</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru¿ dummy structure on a wafer to remove the feeding networks with arbitrary geometry surrounding the MOS transistors. The shielding technique is employed to improve the substrate isolation and fixture scalability. To mitigate the parasitic effects of the dangling leg between the MOSFET and the ground plane, microstriplike interconnects are introduced to mount the devices. Full-wave electromagnetic simulations were also accomplished to substantiate the interconnect scalability and network combinations. The MOS transistors and deembedding dummy patterns were implemented in a 0.13-¿m standard CMOS technology and characterized up to 30 GHz. Compared with the conventional deembedding methods, the proposed approach consumes less than 33% of chip area and characterization time for modeling test keys, while still maintaining high accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2008.2011685</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2009-02, Vol.56 (2), p.299-305
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2008_2011685
source IEEE Electronic Library (IEL)
subjects Applied sciences
Deembedding
Design. Technologies. Operation analysis. Testing
Devices
Dummies
Electronics
Exact sciences and technology
Fixtures
Geometry
Integrated circuit modeling
Integrated circuits
Mathematics
Metal oxide semiconductors
Methodology
Microstrip
Microwave and submillimeter wave devices, electron transfer devices
microwave measurements
Microwave theory and techniques
Microwave transistors
modeling
MOSFETs
Networks
parasitics
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Transistors
Transmission line matrix methods
title Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry-Scalable%20Parasitic%20Deembedding%20Methodology%20for%20On-Wafer%20Microwave%20Characterization%20of%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ming-Hsiang%20Cho&rft.date=2009-02-01&rft.volume=56&rft.issue=2&rft.spage=299&rft.epage=305&rft.pages=299-305&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2008.2011685&rft_dat=%3Cproquest_RIE%3E869844136%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856927147&rft_id=info:pmid/&rft_ieee_id=4752730&rfr_iscdi=true