Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs
This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2009-02, Vol.56 (2), p.299-305 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 2 |
container_start_page | 299 |
container_title | IEEE transactions on electron devices |
container_volume | 56 |
creator | Ming-Hsiang Cho Chen, D. Lee, R. An-Sam Peng Lin-Kun Wu Chune-Sin Yeh |
description | This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru¿ dummy structure on a wafer to remove the feeding networks with arbitrary geometry surrounding the MOS transistors. The shielding technique is employed to improve the substrate isolation and fixture scalability. To mitigate the parasitic effects of the dangling leg between the MOSFET and the ground plane, microstriplike interconnects are introduced to mount the devices. Full-wave electromagnetic simulations were also accomplished to substantiate the interconnect scalability and network combinations. The MOS transistors and deembedding dummy patterns were implemented in a 0.13-¿m standard CMOS technology and characterized up to 30 GHz. Compared with the conventional deembedding methods, the proposed approach consumes less than 33% of chip area and characterization time for modeling test keys, while still maintaining high accuracy. |
doi_str_mv | 10.1109/TED.2008.2011685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2008_2011685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4752730</ieee_id><sourcerecordid>869844136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-33aae74c2fabf5094e9e574413fddc0604757ca3dddf87efd8a1636cc6ee20893</originalsourceid><addsrcrecordid>eNp9kctrVDEYxYMoOLbuBTdB0K5uzevmsZTpQ6HDCK24DJnkS5ty56YmdyzTv94MM3ThopuEJL9z-HIOQh8oOaWUmK8352enjBDdFkql7l-hGe171Rkp5Gs0I4TqznDN36J3td63oxSCzVC8hLyGqWy7a-8GtxoA_3TF1TQlj88A1isIIY23eAHTXQ55yLdbHHPBy7H77SIUvEi-5Ef3F_D8rin9BCU9uSnlEeeIF8vri_ObeozeRDdUeH_Yj9Cvdj3_3l0tL3_Mv111vo02dZw7B0p4Ft0q9sQIMNArISiPIXgiiVC98o6HEKJWEIN2VHLpvQRgRBt-hE72vg8l_9lAnew6VQ_D4EbIm2q1NHpnJxv55UWSi55QbngDP_0H3udNGdsvrO6lYYoK1SCyh1oWtRaI9qGktStbS4nd9WNbP3bXjz300ySfD76utuhjcaNP9VnHKOeKCda4j3suAcDzcwuCKU74P0EemLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856927147</pqid></control><display><type>article</type><title>Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Ming-Hsiang Cho ; Chen, D. ; Lee, R. ; An-Sam Peng ; Lin-Kun Wu ; Chune-Sin Yeh</creator><creatorcontrib>Ming-Hsiang Cho ; Chen, D. ; Lee, R. ; An-Sam Peng ; Lin-Kun Wu ; Chune-Sin Yeh</creatorcontrib><description>This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru¿ dummy structure on a wafer to remove the feeding networks with arbitrary geometry surrounding the MOS transistors. The shielding technique is employed to improve the substrate isolation and fixture scalability. To mitigate the parasitic effects of the dangling leg between the MOSFET and the ground plane, microstriplike interconnects are introduced to mount the devices. Full-wave electromagnetic simulations were also accomplished to substantiate the interconnect scalability and network combinations. The MOS transistors and deembedding dummy patterns were implemented in a 0.13-¿m standard CMOS technology and characterized up to 30 GHz. Compared with the conventional deembedding methods, the proposed approach consumes less than 33% of chip area and characterization time for modeling test keys, while still maintaining high accuracy.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2008.2011685</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Deembedding ; Design. Technologies. Operation analysis. Testing ; Devices ; Dummies ; Electronics ; Exact sciences and technology ; Fixtures ; Geometry ; Integrated circuit modeling ; Integrated circuits ; Mathematics ; Metal oxide semiconductors ; Methodology ; Microstrip ; Microwave and submillimeter wave devices, electron transfer devices ; microwave measurements ; Microwave theory and techniques ; Microwave transistors ; modeling ; MOSFETs ; Networks ; parasitics ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Transistors ; Transmission line matrix methods</subject><ispartof>IEEE transactions on electron devices, 2009-02, Vol.56 (2), p.299-305</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-33aae74c2fabf5094e9e574413fddc0604757ca3dddf87efd8a1636cc6ee20893</citedby><cites>FETCH-LOGICAL-c383t-33aae74c2fabf5094e9e574413fddc0604757ca3dddf87efd8a1636cc6ee20893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4752730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4752730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21337242$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ming-Hsiang Cho</creatorcontrib><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Lee, R.</creatorcontrib><creatorcontrib>An-Sam Peng</creatorcontrib><creatorcontrib>Lin-Kun Wu</creatorcontrib><creatorcontrib>Chune-Sin Yeh</creatorcontrib><title>Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru¿ dummy structure on a wafer to remove the feeding networks with arbitrary geometry surrounding the MOS transistors. The shielding technique is employed to improve the substrate isolation and fixture scalability. To mitigate the parasitic effects of the dangling leg between the MOSFET and the ground plane, microstriplike interconnects are introduced to mount the devices. Full-wave electromagnetic simulations were also accomplished to substantiate the interconnect scalability and network combinations. The MOS transistors and deembedding dummy patterns were implemented in a 0.13-¿m standard CMOS technology and characterized up to 30 GHz. Compared with the conventional deembedding methods, the proposed approach consumes less than 33% of chip area and characterization time for modeling test keys, while still maintaining high accuracy.</description><subject>Applied sciences</subject><subject>Deembedding</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Dummies</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fixtures</subject><subject>Geometry</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Mathematics</subject><subject>Metal oxide semiconductors</subject><subject>Methodology</subject><subject>Microstrip</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>microwave measurements</subject><subject>Microwave theory and techniques</subject><subject>Microwave transistors</subject><subject>modeling</subject><subject>MOSFETs</subject><subject>Networks</subject><subject>parasitics</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Transistors</subject><subject>Transmission line matrix methods</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctrVDEYxYMoOLbuBTdB0K5uzevmsZTpQ6HDCK24DJnkS5ty56YmdyzTv94MM3ThopuEJL9z-HIOQh8oOaWUmK8352enjBDdFkql7l-hGe171Rkp5Gs0I4TqznDN36J3td63oxSCzVC8hLyGqWy7a-8GtxoA_3TF1TQlj88A1isIIY23eAHTXQ55yLdbHHPBy7H77SIUvEi-5Ef3F_D8rin9BCU9uSnlEeeIF8vri_ObeozeRDdUeH_Yj9Cvdj3_3l0tL3_Mv111vo02dZw7B0p4Ft0q9sQIMNArISiPIXgiiVC98o6HEKJWEIN2VHLpvQRgRBt-hE72vg8l_9lAnew6VQ_D4EbIm2q1NHpnJxv55UWSi55QbngDP_0H3udNGdsvrO6lYYoK1SCyh1oWtRaI9qGktStbS4nd9WNbP3bXjz300ySfD76utuhjcaNP9VnHKOeKCda4j3suAcDzcwuCKU74P0EemLw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Ming-Hsiang Cho</creator><creator>Chen, D.</creator><creator>Lee, R.</creator><creator>An-Sam Peng</creator><creator>Lin-Kun Wu</creator><creator>Chune-Sin Yeh</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs</title><author>Ming-Hsiang Cho ; Chen, D. ; Lee, R. ; An-Sam Peng ; Lin-Kun Wu ; Chune-Sin Yeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-33aae74c2fabf5094e9e574413fddc0604757ca3dddf87efd8a1636cc6ee20893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Deembedding</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Dummies</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fixtures</topic><topic>Geometry</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Mathematics</topic><topic>Metal oxide semiconductors</topic><topic>Methodology</topic><topic>Microstrip</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>microwave measurements</topic><topic>Microwave theory and techniques</topic><topic>Microwave transistors</topic><topic>modeling</topic><topic>MOSFETs</topic><topic>Networks</topic><topic>parasitics</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Transistors</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming-Hsiang Cho</creatorcontrib><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Lee, R.</creatorcontrib><creatorcontrib>An-Sam Peng</creatorcontrib><creatorcontrib>Lin-Kun Wu</creatorcontrib><creatorcontrib>Chune-Sin Yeh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ming-Hsiang Cho</au><au>Chen, D.</au><au>Lee, R.</au><au>An-Sam Peng</au><au>Lin-Kun Wu</au><au>Chune-Sin Yeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>56</volume><issue>2</issue><spage>299</spage><epage>305</epage><pages>299-305</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper presents a geometry-scalable parasitic deembedding technique for on-wafer S -parameter measurements of silicon MOSFETs. The proposed methodology is based on the transmission-line theory and the cascade and parallel combinations of two-port networks. We use only one ¿reflect¿ and one ¿thru¿ dummy structure on a wafer to remove the feeding networks with arbitrary geometry surrounding the MOS transistors. The shielding technique is employed to improve the substrate isolation and fixture scalability. To mitigate the parasitic effects of the dangling leg between the MOSFET and the ground plane, microstriplike interconnects are introduced to mount the devices. Full-wave electromagnetic simulations were also accomplished to substantiate the interconnect scalability and network combinations. The MOS transistors and deembedding dummy patterns were implemented in a 0.13-¿m standard CMOS technology and characterized up to 30 GHz. Compared with the conventional deembedding methods, the proposed approach consumes less than 33% of chip area and characterization time for modeling test keys, while still maintaining high accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2008.2011685</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2009-02, Vol.56 (2), p.299-305 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2008_2011685 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Deembedding Design. Technologies. Operation analysis. Testing Devices Dummies Electronics Exact sciences and technology Fixtures Geometry Integrated circuit modeling Integrated circuits Mathematics Metal oxide semiconductors Methodology Microstrip Microwave and submillimeter wave devices, electron transfer devices microwave measurements Microwave theory and techniques Microwave transistors modeling MOSFETs Networks parasitics Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Transistors Transmission line matrix methods |
title | Geometry-Scalable Parasitic Deembedding Methodology for On-Wafer Microwave Characterization of MOSFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry-Scalable%20Parasitic%20Deembedding%20Methodology%20for%20On-Wafer%20Microwave%20Characterization%20of%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ming-Hsiang%20Cho&rft.date=2009-02-01&rft.volume=56&rft.issue=2&rft.spage=299&rft.epage=305&rft.pages=299-305&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2008.2011685&rft_dat=%3Cproquest_RIE%3E869844136%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856927147&rft_id=info:pmid/&rft_ieee_id=4752730&rfr_iscdi=true |