A computationally efficient physics-based compact bipolar transistor model for circuit Design-part I: model formulation

A compact bipolar transistor model is presented that combines the simplicity of the SPICE Gummel-Poon model (SGPM) with some major features of HICUM. The new model, called HICUM/L0, is more physics-based and accurate than the SGPM and at the same time, from a computational point of view, suitable fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2006-02, Vol.53 (2), p.279-286
Hauptverfasser: Schroter, M., Lehmann, S., Fregonese, S., Zimmer, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 2
container_start_page 279
container_title IEEE transactions on electron devices
container_volume 53
creator Schroter, M.
Lehmann, S.
Fregonese, S.
Zimmer, T.
description A compact bipolar transistor model is presented that combines the simplicity of the SPICE Gummel-Poon model (SGPM) with some major features of HICUM. The new model, called HICUM/L0, is more physics-based and accurate than the SGPM and at the same time, from a computational point of view, suitable for simulating large circuits. The new model has been implemented in Verilog-A and, as compiled code, in various commercial circuit simulators. In Part I, the fundamental model formulation is presented along with a derivation of the most important equations. Experimental results are shown in Part II.
doi_str_mv 10.1109/TED.2005.862241
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2005_862241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1580865</ieee_id><sourcerecordid>27987259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-15309e06c7e994f5827c0e57f2b8bdacb114f0decaacc95c5b561c88297799e03</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpIdNJ11l0Ywpt6MITSbYsKbshjyYw0E26FvIduVGQLVeSW-bfV45DB7rISq_vnCvOQeiM4A0hWF483FxvKMZsIxpKa_IGrQhjvJRN3bxFK4yJKGUlqhP0PsanfGzqmq7Qn20Bvh-npJP1g3buUJius2DNkIrx8RAtxLLV0eyfOQ2paO3onQ5FCnqINiYfit7vjSu6vAMbYLKpuDbR_hzKUYdU3F8egX5yz5NO0btOu2g-vKxr9OP25uHqrtx9_3Z_td2VUBOWSsIqLA1ugBsp644JygEbxjvainavoSWk7vDegNYAkgFrWUNACCo5l1lYrdHXxfdROzUG2-twUF5bdbfdqfluDoZITn6TzJ4v7Bj8r8nEpHobwTinB-OnqISQlRQsh7hGX14lKZeCUyYz-Ok_8MlPIeec3RpGmobK2e1igSD4GIPp_n2UYDV3q3K3au5WLd1mxecXWx1Buy43ATYeZbyuGato5j4unDXGHJ-ZwHl69RdFYa0f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865166298</pqid></control><display><type>article</type><title>A computationally efficient physics-based compact bipolar transistor model for circuit Design-part I: model formulation</title><source>IEEE Electronic Library (IEL)</source><creator>Schroter, M. ; Lehmann, S. ; Fregonese, S. ; Zimmer, T.</creator><creatorcontrib>Schroter, M. ; Lehmann, S. ; Fregonese, S. ; Zimmer, T.</creatorcontrib><description>A compact bipolar transistor model is presented that combines the simplicity of the SPICE Gummel-Poon model (SGPM) with some major features of HICUM. The new model, called HICUM/L0, is more physics-based and accurate than the SGPM and at the same time, from a computational point of view, suitable for simulating large circuits. The new model has been implemented in Verilog-A and, as compiled code, in various commercial circuit simulators. In Part I, the fundamental model formulation is presented along with a derivation of the most important equations. Experimental results are shown in Part II.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2005.862241</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analog circuits ; Analog high-frequency circuit design ; Analog integrated circuits ; Applied sciences ; Bipolar transistors ; Circuit properties ; Circuits ; compact transistor modeling ; Computational efficiency ; Derivation ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Engineering Sciences ; Exact sciences and technology ; HICUM ; Integrated circuit design ; Mathematical analysis ; Mathematical models ; Micro and nanotechnologies ; Microelectronics ; Semiconductor device modeling ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Simulators ; SPICE ; Theoretical study. Circuits analysis and design ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2006-02, Vol.53 (2), p.279-286</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-15309e06c7e994f5827c0e57f2b8bdacb114f0decaacc95c5b561c88297799e03</citedby><cites>FETCH-LOGICAL-c415t-15309e06c7e994f5827c0e57f2b8bdacb114f0decaacc95c5b561c88297799e03</cites><orcidid>0000-0002-1829-2633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1580865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1580865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17445532$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00181971$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroter, M.</creatorcontrib><creatorcontrib>Lehmann, S.</creatorcontrib><creatorcontrib>Fregonese, S.</creatorcontrib><creatorcontrib>Zimmer, T.</creatorcontrib><title>A computationally efficient physics-based compact bipolar transistor model for circuit Design-part I: model formulation</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A compact bipolar transistor model is presented that combines the simplicity of the SPICE Gummel-Poon model (SGPM) with some major features of HICUM. The new model, called HICUM/L0, is more physics-based and accurate than the SGPM and at the same time, from a computational point of view, suitable for simulating large circuits. The new model has been implemented in Verilog-A and, as compiled code, in various commercial circuit simulators. In Part I, the fundamental model formulation is presented along with a derivation of the most important equations. Experimental results are shown in Part II.</description><subject>Analog circuits</subject><subject>Analog high-frequency circuit design</subject><subject>Analog integrated circuits</subject><subject>Applied sciences</subject><subject>Bipolar transistors</subject><subject>Circuit properties</subject><subject>Circuits</subject><subject>compact transistor modeling</subject><subject>Computational efficiency</subject><subject>Derivation</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>HICUM</subject><subject>Integrated circuit design</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Simulators</subject><subject>SPICE</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtr3DAUhUVpIdNJ11l0Ywpt6MITSbYsKbshjyYw0E26FvIduVGQLVeSW-bfV45DB7rISq_vnCvOQeiM4A0hWF483FxvKMZsIxpKa_IGrQhjvJRN3bxFK4yJKGUlqhP0PsanfGzqmq7Qn20Bvh-npJP1g3buUJius2DNkIrx8RAtxLLV0eyfOQ2paO3onQ5FCnqINiYfit7vjSu6vAMbYLKpuDbR_hzKUYdU3F8egX5yz5NO0btOu2g-vKxr9OP25uHqrtx9_3Z_td2VUBOWSsIqLA1ugBsp644JygEbxjvainavoSWk7vDegNYAkgFrWUNACCo5l1lYrdHXxfdROzUG2-twUF5bdbfdqfluDoZITn6TzJ4v7Bj8r8nEpHobwTinB-OnqISQlRQsh7hGX14lKZeCUyYz-Ok_8MlPIeec3RpGmobK2e1igSD4GIPp_n2UYDV3q3K3au5WLd1mxecXWx1Buy43ATYeZbyuGato5j4unDXGHJ-ZwHl69RdFYa0f</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Schroter, M.</creator><creator>Lehmann, S.</creator><creator>Fregonese, S.</creator><creator>Zimmer, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid></search><sort><creationdate>20060201</creationdate><title>A computationally efficient physics-based compact bipolar transistor model for circuit Design-part I: model formulation</title><author>Schroter, M. ; Lehmann, S. ; Fregonese, S. ; Zimmer, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-15309e06c7e994f5827c0e57f2b8bdacb114f0decaacc95c5b561c88297799e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analog circuits</topic><topic>Analog high-frequency circuit design</topic><topic>Analog integrated circuits</topic><topic>Applied sciences</topic><topic>Bipolar transistors</topic><topic>Circuit properties</topic><topic>Circuits</topic><topic>compact transistor modeling</topic><topic>Computational efficiency</topic><topic>Derivation</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>HICUM</topic><topic>Integrated circuit design</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Simulators</topic><topic>SPICE</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroter, M.</creatorcontrib><creatorcontrib>Lehmann, S.</creatorcontrib><creatorcontrib>Fregonese, S.</creatorcontrib><creatorcontrib>Zimmer, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schroter, M.</au><au>Lehmann, S.</au><au>Fregonese, S.</au><au>Zimmer, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computationally efficient physics-based compact bipolar transistor model for circuit Design-part I: model formulation</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2006-02-01</date><risdate>2006</risdate><volume>53</volume><issue>2</issue><spage>279</spage><epage>286</epage><pages>279-286</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A compact bipolar transistor model is presented that combines the simplicity of the SPICE Gummel-Poon model (SGPM) with some major features of HICUM. The new model, called HICUM/L0, is more physics-based and accurate than the SGPM and at the same time, from a computational point of view, suitable for simulating large circuits. The new model has been implemented in Verilog-A and, as compiled code, in various commercial circuit simulators. In Part I, the fundamental model formulation is presented along with a derivation of the most important equations. Experimental results are shown in Part II.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2005.862241</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2006-02, Vol.53 (2), p.279-286
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2005_862241
source IEEE Electronic Library (IEL)
subjects Analog circuits
Analog high-frequency circuit design
Analog integrated circuits
Applied sciences
Bipolar transistors
Circuit properties
Circuits
compact transistor modeling
Computational efficiency
Derivation
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Engineering Sciences
Exact sciences and technology
HICUM
Integrated circuit design
Mathematical analysis
Mathematical models
Micro and nanotechnologies
Microelectronics
Semiconductor device modeling
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Simulators
SPICE
Theoretical study. Circuits analysis and design
Transistors
title A computationally efficient physics-based compact bipolar transistor model for circuit Design-part I: model formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computationally%20efficient%20physics-based%20compact%20bipolar%20transistor%20model%20for%20circuit%20Design-part%20I:%20model%20formulation&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Schroter,%20M.&rft.date=2006-02-01&rft.volume=53&rft.issue=2&rft.spage=279&rft.epage=286&rft.pages=279-286&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2005.862241&rft_dat=%3Cproquest_RIE%3E27987259%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865166298&rft_id=info:pmid/&rft_ieee_id=1580865&rfr_iscdi=true