Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive

Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2023-12, Vol.38 (4), p.2387-2395
Hauptverfasser: Oner, Mustafa Umit, Sahin, Ilker, Keysan, Ozan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2395
container_issue 4
container_start_page 2387
container_title IEEE transactions on energy conversion
container_volume 38
creator Oner, Mustafa Umit
Sahin, Ilker
Keysan, Ozan
description Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.
doi_str_mv 10.1109/TEC.2023.3274052
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2023_3274052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10120996</ieee_id><sourcerecordid>2895006829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-97ad5b7d6f6cc5b31ea95a6d2d8d16e7d11f3fab85edb262bd564817c2e932513</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEuVjZ2CwxJzij9qxR5S2gFRgaJkjx76AIdTFdoqY-eOkKgPTSXfPe6d7ELqgZEwp0derWTVmhPExZ-WECHaARlQIVRAi9CEaEaVEobTUx-gkpTdC6EQwOkI_j9BH0-FHyF8hvic8hQw24_t1hlis-rjGy9cQM658tL3PeG76Lif8nPz6ZaC2EAcQL798tq-71jKb7FP2NuE2RGxw1YUErliEsMFVWOcYug4cfgh5GE-j38IZOmpNl-D8r56i5_lsVd0Vi6fb--pmUVjOJ7nQpXGiKZ1spbWi4RSMFkY65pSjEkpHactb0ygBrmGSNU7IiaKlZaA5E5Sfoqv93k0Mnz2kXL-F4cHhZM2UFoRIxfRAkT1lY0gpQltvov8w8bumpN6prgfV9U51_ad6iFzuIx4A_uGUEa0l_wW6AHw_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895006829</pqid></control><display><type>article</type><title>Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive</title><source>IEEE Electronic Library (IEL)</source><creator>Oner, Mustafa Umit ; Sahin, Ilker ; Keysan, Ozan</creator><creatorcontrib>Oner, Mustafa Umit ; Sahin, Ilker ; Keysan, Ozan</creatorcontrib><description>Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2023.3274052</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Closed loops ; Condition monitoring ; Confidence intervals ; Controllers ; Datasets ; Fault detection ; Fault diagnosis ; induction motor ; Induction motors ; Inverters ; Machine learning ; model predictive control ; motor drives ; multi-layer perceptron ; Multilayer perceptrons ; Multilayers ; Neural networks ; Predictive control ; Recurrent neural networks ; Short circuits ; Switching</subject><ispartof>IEEE transactions on energy conversion, 2023-12, Vol.38 (4), p.2387-2395</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-97ad5b7d6f6cc5b31ea95a6d2d8d16e7d11f3fab85edb262bd564817c2e932513</citedby><cites>FETCH-LOGICAL-c334t-97ad5b7d6f6cc5b31ea95a6d2d8d16e7d11f3fab85edb262bd564817c2e932513</cites><orcidid>0000-0002-6311-7906 ; 0000-0003-3085-8828 ; 0000-0003-4252-9167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10120996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10120996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oner, Mustafa Umit</creatorcontrib><creatorcontrib>Sahin, Ilker</creatorcontrib><creatorcontrib>Keysan, Ozan</creatorcontrib><title>Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Closed loops</subject><subject>Condition monitoring</subject><subject>Confidence intervals</subject><subject>Controllers</subject><subject>Datasets</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>induction motor</subject><subject>Induction motors</subject><subject>Inverters</subject><subject>Machine learning</subject><subject>model predictive control</subject><subject>motor drives</subject><subject>multi-layer perceptron</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Predictive control</subject><subject>Recurrent neural networks</subject><subject>Short circuits</subject><subject>Switching</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEuVjZ2CwxJzij9qxR5S2gFRgaJkjx76AIdTFdoqY-eOkKgPTSXfPe6d7ELqgZEwp0derWTVmhPExZ-WECHaARlQIVRAi9CEaEaVEobTUx-gkpTdC6EQwOkI_j9BH0-FHyF8hvic8hQw24_t1hlis-rjGy9cQM658tL3PeG76Lif8nPz6ZaC2EAcQL798tq-71jKb7FP2NuE2RGxw1YUErliEsMFVWOcYug4cfgh5GE-j38IZOmpNl-D8r56i5_lsVd0Vi6fb--pmUVjOJ7nQpXGiKZ1spbWi4RSMFkY65pSjEkpHactb0ygBrmGSNU7IiaKlZaA5E5Sfoqv93k0Mnz2kXL-F4cHhZM2UFoRIxfRAkT1lY0gpQltvov8w8bumpN6prgfV9U51_ad6iFzuIx4A_uGUEa0l_wW6AHw_</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Oner, Mustafa Umit</creator><creator>Sahin, Ilker</creator><creator>Keysan, Ozan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6311-7906</orcidid><orcidid>https://orcid.org/0000-0003-3085-8828</orcidid><orcidid>https://orcid.org/0000-0003-4252-9167</orcidid></search><sort><creationdate>202312</creationdate><title>Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive</title><author>Oner, Mustafa Umit ; Sahin, Ilker ; Keysan, Ozan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-97ad5b7d6f6cc5b31ea95a6d2d8d16e7d11f3fab85edb262bd564817c2e932513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Closed loops</topic><topic>Condition monitoring</topic><topic>Confidence intervals</topic><topic>Controllers</topic><topic>Datasets</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>induction motor</topic><topic>Induction motors</topic><topic>Inverters</topic><topic>Machine learning</topic><topic>model predictive control</topic><topic>motor drives</topic><topic>multi-layer perceptron</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Predictive control</topic><topic>Recurrent neural networks</topic><topic>Short circuits</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oner, Mustafa Umit</creatorcontrib><creatorcontrib>Sahin, Ilker</creatorcontrib><creatorcontrib>Keysan, Ozan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oner, Mustafa Umit</au><au>Sahin, Ilker</au><au>Keysan, Ozan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2023-12</date><risdate>2023</risdate><volume>38</volume><issue>4</issue><spage>2387</spage><epage>2395</epage><pages>2387-2395</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2023.3274052</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6311-7906</orcidid><orcidid>https://orcid.org/0000-0003-3085-8828</orcidid><orcidid>https://orcid.org/0000-0003-4252-9167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2023-12, Vol.38 (4), p.2387-2395
issn 0885-8969
1558-0059
language eng
recordid cdi_crossref_primary_10_1109_TEC_2023_3274052
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Closed loops
Condition monitoring
Confidence intervals
Controllers
Datasets
Fault detection
Fault diagnosis
induction motor
Induction motors
Inverters
Machine learning
model predictive control
motor drives
multi-layer perceptron
Multilayer perceptrons
Multilayers
Neural networks
Predictive control
Recurrent neural networks
Short circuits
Switching
title Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20Detect%20Inter-Turn%20Short%20Circuit%20Faults%20Using%20Inverter%20Switching%20Statistics%20for%20a%20Closed-Loop%20Controlled%20Motor%20Drive&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Oner,%20Mustafa%20Umit&rft.date=2023-12&rft.volume=38&rft.issue=4&rft.spage=2387&rft.epage=2395&rft.pages=2387-2395&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2023.3274052&rft_dat=%3Cproquest_RIE%3E2895006829%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895006829&rft_id=info:pmid/&rft_ieee_id=10120996&rfr_iscdi=true