Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive
Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2023-12, Vol.38 (4), p.2387-2395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2395 |
---|---|
container_issue | 4 |
container_start_page | 2387 |
container_title | IEEE transactions on energy conversion |
container_volume | 38 |
creator | Oner, Mustafa Umit Sahin, Ilker Keysan, Ozan |
description | Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network. |
doi_str_mv | 10.1109/TEC.2023.3274052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2023_3274052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10120996</ieee_id><sourcerecordid>2895006829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-97ad5b7d6f6cc5b31ea95a6d2d8d16e7d11f3fab85edb262bd564817c2e932513</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEuVjZ2CwxJzij9qxR5S2gFRgaJkjx76AIdTFdoqY-eOkKgPTSXfPe6d7ELqgZEwp0derWTVmhPExZ-WECHaARlQIVRAi9CEaEaVEobTUx-gkpTdC6EQwOkI_j9BH0-FHyF8hvic8hQw24_t1hlis-rjGy9cQM658tL3PeG76Lif8nPz6ZaC2EAcQL798tq-71jKb7FP2NuE2RGxw1YUErliEsMFVWOcYug4cfgh5GE-j38IZOmpNl-D8r56i5_lsVd0Vi6fb--pmUVjOJ7nQpXGiKZ1spbWi4RSMFkY65pSjEkpHactb0ygBrmGSNU7IiaKlZaA5E5Sfoqv93k0Mnz2kXL-F4cHhZM2UFoRIxfRAkT1lY0gpQltvov8w8bumpN6prgfV9U51_ad6iFzuIx4A_uGUEa0l_wW6AHw_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895006829</pqid></control><display><type>article</type><title>Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive</title><source>IEEE Electronic Library (IEL)</source><creator>Oner, Mustafa Umit ; Sahin, Ilker ; Keysan, Ozan</creator><creatorcontrib>Oner, Mustafa Umit ; Sahin, Ilker ; Keysan, Ozan</creatorcontrib><description>Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2023.3274052</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Closed loops ; Condition monitoring ; Confidence intervals ; Controllers ; Datasets ; Fault detection ; Fault diagnosis ; induction motor ; Induction motors ; Inverters ; Machine learning ; model predictive control ; motor drives ; multi-layer perceptron ; Multilayer perceptrons ; Multilayers ; Neural networks ; Predictive control ; Recurrent neural networks ; Short circuits ; Switching</subject><ispartof>IEEE transactions on energy conversion, 2023-12, Vol.38 (4), p.2387-2395</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-97ad5b7d6f6cc5b31ea95a6d2d8d16e7d11f3fab85edb262bd564817c2e932513</citedby><cites>FETCH-LOGICAL-c334t-97ad5b7d6f6cc5b31ea95a6d2d8d16e7d11f3fab85edb262bd564817c2e932513</cites><orcidid>0000-0002-6311-7906 ; 0000-0003-3085-8828 ; 0000-0003-4252-9167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10120996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10120996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oner, Mustafa Umit</creatorcontrib><creatorcontrib>Sahin, Ilker</creatorcontrib><creatorcontrib>Keysan, Ozan</creatorcontrib><title>Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Closed loops</subject><subject>Condition monitoring</subject><subject>Confidence intervals</subject><subject>Controllers</subject><subject>Datasets</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>induction motor</subject><subject>Induction motors</subject><subject>Inverters</subject><subject>Machine learning</subject><subject>model predictive control</subject><subject>motor drives</subject><subject>multi-layer perceptron</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Predictive control</subject><subject>Recurrent neural networks</subject><subject>Short circuits</subject><subject>Switching</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEuVjZ2CwxJzij9qxR5S2gFRgaJkjx76AIdTFdoqY-eOkKgPTSXfPe6d7ELqgZEwp0derWTVmhPExZ-WECHaARlQIVRAi9CEaEaVEobTUx-gkpTdC6EQwOkI_j9BH0-FHyF8hvic8hQw24_t1hlis-rjGy9cQM658tL3PeG76Lif8nPz6ZaC2EAcQL798tq-71jKb7FP2NuE2RGxw1YUErliEsMFVWOcYug4cfgh5GE-j38IZOmpNl-D8r56i5_lsVd0Vi6fb--pmUVjOJ7nQpXGiKZ1spbWi4RSMFkY65pSjEkpHactb0ygBrmGSNU7IiaKlZaA5E5Sfoqv93k0Mnz2kXL-F4cHhZM2UFoRIxfRAkT1lY0gpQltvov8w8bumpN6prgfV9U51_ad6iFzuIx4A_uGUEa0l_wW6AHw_</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Oner, Mustafa Umit</creator><creator>Sahin, Ilker</creator><creator>Keysan, Ozan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6311-7906</orcidid><orcidid>https://orcid.org/0000-0003-3085-8828</orcidid><orcidid>https://orcid.org/0000-0003-4252-9167</orcidid></search><sort><creationdate>202312</creationdate><title>Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive</title><author>Oner, Mustafa Umit ; Sahin, Ilker ; Keysan, Ozan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-97ad5b7d6f6cc5b31ea95a6d2d8d16e7d11f3fab85edb262bd564817c2e932513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Closed loops</topic><topic>Condition monitoring</topic><topic>Confidence intervals</topic><topic>Controllers</topic><topic>Datasets</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>induction motor</topic><topic>Induction motors</topic><topic>Inverters</topic><topic>Machine learning</topic><topic>model predictive control</topic><topic>motor drives</topic><topic>multi-layer perceptron</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Predictive control</topic><topic>Recurrent neural networks</topic><topic>Short circuits</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oner, Mustafa Umit</creatorcontrib><creatorcontrib>Sahin, Ilker</creatorcontrib><creatorcontrib>Keysan, Ozan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oner, Mustafa Umit</au><au>Sahin, Ilker</au><au>Keysan, Ozan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2023-12</date><risdate>2023</risdate><volume>38</volume><issue>4</issue><spage>2387</spage><epage>2395</epage><pages>2387-2395</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2023.3274052</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6311-7906</orcidid><orcidid>https://orcid.org/0000-0003-3085-8828</orcidid><orcidid>https://orcid.org/0000-0003-4252-9167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2023-12, Vol.38 (4), p.2387-2395 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEC_2023_3274052 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Closed loops Condition monitoring Confidence intervals Controllers Datasets Fault detection Fault diagnosis induction motor Induction motors Inverters Machine learning model predictive control motor drives multi-layer perceptron Multilayer perceptrons Multilayers Neural networks Predictive control Recurrent neural networks Short circuits Switching |
title | Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20Detect%20Inter-Turn%20Short%20Circuit%20Faults%20Using%20Inverter%20Switching%20Statistics%20for%20a%20Closed-Loop%20Controlled%20Motor%20Drive&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Oner,%20Mustafa%20Umit&rft.date=2023-12&rft.volume=38&rft.issue=4&rft.spage=2387&rft.epage=2395&rft.pages=2387-2395&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2023.3274052&rft_dat=%3Cproquest_RIE%3E2895006829%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895006829&rft_id=info:pmid/&rft_ieee_id=10120996&rfr_iscdi=true |