A Modified Inverse Vector Hysteresis Model for Nonoriented Electrical Steels Considering Anisotropy for FEA
This paper presents a modified Mayergoyz-based vector hysteresis model to describe the anisotropic material behavior of nonoriented (NO) steels over a wide range of rotational excitations. The proposed model adopts a new representation of a vector Everett function, which is actually an elliptical in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2021-12, Vol.36 (4), p.3251-3260 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3260 |
---|---|
container_issue | 4 |
container_start_page | 3251 |
container_title | IEEE transactions on energy conversion |
container_volume | 36 |
creator | Yue, Shuaichao Anderson, Philip I. Li, Yongjian Yang, Qingxin Moses, Anthony |
description | This paper presents a modified Mayergoyz-based vector hysteresis model to describe the anisotropic material behavior of nonoriented (NO) steels over a wide range of rotational excitations. The proposed model adopts a new representation of a vector Everett function, which is actually an elliptical interpolation motivated by the real anisotropic behavior of NO steel, to deal with the uniaxial anisotropy characteristic, which is especially pronounced at low induction levels. The biaxial anisotropy occurring at high densities is described by a nonlinear coefficient, which is actually a function of the magnitude of magnetic flux density. A systematic identification algorithm is given in detail. The validity of this model is verified through comparison with experimental data under both alternating and rotational excitations. The 2-D finite element analysis (FEA) of incorporating this model into TEAM problem 32 simulation is also illustrated. |
doi_str_mv | 10.1109/TEC.2021.3073349 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2021_3073349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9404814</ieee_id><sourcerecordid>2604918006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7a8b79c4b060e45720c59a6575fb5198cb60b4881fb693dc2b4669eb166a49363</originalsourceid><addsrcrecordid>eNo9kM9LwzAUgIMoOKd3wUvAc-dLm6TJsYzODaYenF5Df7xKZm1m0gn7723d8PTg8X3vwUfILYMZY6AfNvl8FkPMZgmkScL1GZkwIVQEIPQ5mYBSIlJa6ktyFcIWgHERswn5zOiTq21jsaar7gd9QPqOVe88XR5Cjx6DDSOCLW2G5bPrnLfY9QOftwPobVW09LVHbAOduy7YGr3tPmjW2eB673aHP3GRZ9fkoinagDenOSVvi3wzX0brl8fVPFtHVaKgj9JClamueAkSkIs0hkroQopUNKVgWlWlhJIrxZpS6qSu4pJLqbFkUhZcJzKZkvvj3Z1333sMvdm6ve-GlyaWwDVTACMFR6ryLgSPjdl5-1X4g2FgxqRmSGrGpOaUdFDujopFxH9cc-CK8eQXLYNxvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604918006</pqid></control><display><type>article</type><title>A Modified Inverse Vector Hysteresis Model for Nonoriented Electrical Steels Considering Anisotropy for FEA</title><source>IEEE Electronic Library (IEL)</source><creator>Yue, Shuaichao ; Anderson, Philip I. ; Li, Yongjian ; Yang, Qingxin ; Moses, Anthony</creator><creatorcontrib>Yue, Shuaichao ; Anderson, Philip I. ; Li, Yongjian ; Yang, Qingxin ; Moses, Anthony</creatorcontrib><description>This paper presents a modified Mayergoyz-based vector hysteresis model to describe the anisotropic material behavior of nonoriented (NO) steels over a wide range of rotational excitations. The proposed model adopts a new representation of a vector Everett function, which is actually an elliptical interpolation motivated by the real anisotropic behavior of NO steel, to deal with the uniaxial anisotropy characteristic, which is especially pronounced at low induction levels. The biaxial anisotropy occurring at high densities is described by a nonlinear coefficient, which is actually a function of the magnitude of magnetic flux density. A systematic identification algorithm is given in detail. The validity of this model is verified through comparison with experimental data under both alternating and rotational excitations. The 2-D finite element analysis (FEA) of incorporating this model into TEAM problem 32 simulation is also illustrated.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2021.3073349</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Anisotropic magnetoresistance ; Anisotropy ; Electrical steels ; Excitation ; Finite element method ; Flux density ; Hysteresis models ; Interpolation ; Macroscopic magnetic anisotropy ; Magnetic fields ; Magnetic flux ; Magnetic hysteresis ; Mathematical model ; nonoriented electrical steels ; Numerical models ; Steel ; Two dimensional analysis ; Two dimensional models ; vector hysteresis model</subject><ispartof>IEEE transactions on energy conversion, 2021-12, Vol.36 (4), p.3251-3260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7a8b79c4b060e45720c59a6575fb5198cb60b4881fb693dc2b4669eb166a49363</citedby><cites>FETCH-LOGICAL-c380t-7a8b79c4b060e45720c59a6575fb5198cb60b4881fb693dc2b4669eb166a49363</cites><orcidid>0000-0003-1776-005X ; 0000-0002-5609-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9404814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9404814$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yue, Shuaichao</creatorcontrib><creatorcontrib>Anderson, Philip I.</creatorcontrib><creatorcontrib>Li, Yongjian</creatorcontrib><creatorcontrib>Yang, Qingxin</creatorcontrib><creatorcontrib>Moses, Anthony</creatorcontrib><title>A Modified Inverse Vector Hysteresis Model for Nonoriented Electrical Steels Considering Anisotropy for FEA</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This paper presents a modified Mayergoyz-based vector hysteresis model to describe the anisotropic material behavior of nonoriented (NO) steels over a wide range of rotational excitations. The proposed model adopts a new representation of a vector Everett function, which is actually an elliptical interpolation motivated by the real anisotropic behavior of NO steel, to deal with the uniaxial anisotropy characteristic, which is especially pronounced at low induction levels. The biaxial anisotropy occurring at high densities is described by a nonlinear coefficient, which is actually a function of the magnitude of magnetic flux density. A systematic identification algorithm is given in detail. The validity of this model is verified through comparison with experimental data under both alternating and rotational excitations. The 2-D finite element analysis (FEA) of incorporating this model into TEAM problem 32 simulation is also illustrated.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Electrical steels</subject><subject>Excitation</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Hysteresis models</subject><subject>Interpolation</subject><subject>Macroscopic magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic hysteresis</subject><subject>Mathematical model</subject><subject>nonoriented electrical steels</subject><subject>Numerical models</subject><subject>Steel</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><subject>vector hysteresis model</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUgIMoOKd3wUvAc-dLm6TJsYzODaYenF5Df7xKZm1m0gn7723d8PTg8X3vwUfILYMZY6AfNvl8FkPMZgmkScL1GZkwIVQEIPQ5mYBSIlJa6ktyFcIWgHERswn5zOiTq21jsaar7gd9QPqOVe88XR5Cjx6DDSOCLW2G5bPrnLfY9QOftwPobVW09LVHbAOduy7YGr3tPmjW2eB673aHP3GRZ9fkoinagDenOSVvi3wzX0brl8fVPFtHVaKgj9JClamueAkSkIs0hkroQopUNKVgWlWlhJIrxZpS6qSu4pJLqbFkUhZcJzKZkvvj3Z1333sMvdm6ve-GlyaWwDVTACMFR6ryLgSPjdl5-1X4g2FgxqRmSGrGpOaUdFDujopFxH9cc-CK8eQXLYNxvA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Yue, Shuaichao</creator><creator>Anderson, Philip I.</creator><creator>Li, Yongjian</creator><creator>Yang, Qingxin</creator><creator>Moses, Anthony</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1776-005X</orcidid><orcidid>https://orcid.org/0000-0002-5609-0346</orcidid></search><sort><creationdate>202112</creationdate><title>A Modified Inverse Vector Hysteresis Model for Nonoriented Electrical Steels Considering Anisotropy for FEA</title><author>Yue, Shuaichao ; Anderson, Philip I. ; Li, Yongjian ; Yang, Qingxin ; Moses, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7a8b79c4b060e45720c59a6575fb5198cb60b4881fb693dc2b4669eb166a49363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Electrical steels</topic><topic>Excitation</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Hysteresis models</topic><topic>Interpolation</topic><topic>Macroscopic magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic hysteresis</topic><topic>Mathematical model</topic><topic>nonoriented electrical steels</topic><topic>Numerical models</topic><topic>Steel</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><topic>vector hysteresis model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Shuaichao</creatorcontrib><creatorcontrib>Anderson, Philip I.</creatorcontrib><creatorcontrib>Li, Yongjian</creatorcontrib><creatorcontrib>Yang, Qingxin</creatorcontrib><creatorcontrib>Moses, Anthony</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yue, Shuaichao</au><au>Anderson, Philip I.</au><au>Li, Yongjian</au><au>Yang, Qingxin</au><au>Moses, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified Inverse Vector Hysteresis Model for Nonoriented Electrical Steels Considering Anisotropy for FEA</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2021-12</date><risdate>2021</risdate><volume>36</volume><issue>4</issue><spage>3251</spage><epage>3260</epage><pages>3251-3260</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This paper presents a modified Mayergoyz-based vector hysteresis model to describe the anisotropic material behavior of nonoriented (NO) steels over a wide range of rotational excitations. The proposed model adopts a new representation of a vector Everett function, which is actually an elliptical interpolation motivated by the real anisotropic behavior of NO steel, to deal with the uniaxial anisotropy characteristic, which is especially pronounced at low induction levels. The biaxial anisotropy occurring at high densities is described by a nonlinear coefficient, which is actually a function of the magnitude of magnetic flux density. A systematic identification algorithm is given in detail. The validity of this model is verified through comparison with experimental data under both alternating and rotational excitations. The 2-D finite element analysis (FEA) of incorporating this model into TEAM problem 32 simulation is also illustrated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2021.3073349</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1776-005X</orcidid><orcidid>https://orcid.org/0000-0002-5609-0346</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2021-12, Vol.36 (4), p.3251-3260 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEC_2021_3073349 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analytical models Anisotropic magnetoresistance Anisotropy Electrical steels Excitation Finite element method Flux density Hysteresis models Interpolation Macroscopic magnetic anisotropy Magnetic fields Magnetic flux Magnetic hysteresis Mathematical model nonoriented electrical steels Numerical models Steel Two dimensional analysis Two dimensional models vector hysteresis model |
title | A Modified Inverse Vector Hysteresis Model for Nonoriented Electrical Steels Considering Anisotropy for FEA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20Inverse%20Vector%20Hysteresis%20Model%20for%20Nonoriented%20Electrical%20Steels%20Considering%20Anisotropy%20for%20FEA&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Yue,%20Shuaichao&rft.date=2021-12&rft.volume=36&rft.issue=4&rft.spage=3251&rft.epage=3260&rft.pages=3251-3260&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2021.3073349&rft_dat=%3Cproquest_RIE%3E2604918006%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604918006&rft_id=info:pmid/&rft_ieee_id=9404814&rfr_iscdi=true |