Grid-Aware Distributed Model Predictive Control of Heterogeneous Resources in a Distribution Network: Theory and Experimental Validation
In this article, we propose and experimentally validate a scheduling and control framework for distributed energy resources (DERs) that achieves to track a day-ahead dispatch plan of a distribution network hosting controllable and stochastic heterogeneous resources while respecting the local grid co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2021-06, Vol.36 (2), p.1392-1402 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1402 |
---|---|
container_issue | 2 |
container_start_page | 1392 |
container_title | IEEE transactions on energy conversion |
container_volume | 36 |
creator | Gupta, Rahul Sossan, Fabrizio Paolone, Mario |
description | In this article, we propose and experimentally validate a scheduling and control framework for distributed energy resources (DERs) that achieves to track a day-ahead dispatch plan of a distribution network hosting controllable and stochastic heterogeneous resources while respecting the local grid constraints on nodal voltages and lines ampacities. The framework consists of two algorithmic layers. In the first one (day-ahead scheduling), we determine an aggregated dispatch plan. In the second layer (real-time control), a distributed model predictive control (MPC) determines the active and reactive power set-points of the DERs so that their aggregated contribution tracks the dispatch plan while obeying to DERs operational constraints as well as the grid's ones. The proposed framework is experimentally validated on a real-scale microgrid that reproduces the network specifications of the CIGRE microgrid benchmark system. |
doi_str_mv | 10.1109/TEC.2020.3015271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2020_3015271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9163265</ieee_id><sourcerecordid>2530110823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-73b8d377b3df9b7a39700933a6107e97be4b4222a0a0a05579c1fa252998fe283</originalsourceid><addsrcrecordid>eNpFkUFrGzEQhUVJoY7TeyAXQU85rDOSrNWqN-O6dsBpQnF7Fdrd2UTpduVIst38g_7s7OKQMIeB4XuPmXmEnDOYMAb6arOYTzhwmAhgkiv2gYyYlEUGIPUJGUFRyKzQuf5ETmN8BGBTydmI_F8GV2ezgw1Iv7mYgit3CWt642ts6V3A2lXJ7ZHOfZeCb6lv6AoTBn-PHfpdpD8x-l2oMFLXUftu4nxHf2A6-PDnK908oA_P1HY1XfzbYnB_sUu2pb9t62o7sGfkY2PbiJ9f-5j8-r7YzFfZ-nZ5PZ-ts0rkKmVKlEUtlCpF3ehSWaEVgBbC5gwUalXitJxyzi0MJaXSFWssl1zrokFeiDG5PPo-2NZs-0VseDbeOrOarc0wA8GYmIp8z3r2y5HdBv-0w5jMY39q169nuOz_zKDgoqfgSFXBxxiwebNlYIZsTJ-NGbIxr9n0koujxCHiG65ZLnguxQuzgIqr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530110823</pqid></control><display><type>article</type><title>Grid-Aware Distributed Model Predictive Control of Heterogeneous Resources in a Distribution Network: Theory and Experimental Validation</title><source>IEEE Electronic Library (IEL)</source><creator>Gupta, Rahul ; Sossan, Fabrizio ; Paolone, Mario</creator><creatorcontrib>Gupta, Rahul ; Sossan, Fabrizio ; Paolone, Mario</creatorcontrib><description>In this article, we propose and experimentally validate a scheduling and control framework for distributed energy resources (DERs) that achieves to track a day-ahead dispatch plan of a distribution network hosting controllable and stochastic heterogeneous resources while respecting the local grid constraints on nodal voltages and lines ampacities. The framework consists of two algorithmic layers. In the first one (day-ahead scheduling), we determine an aggregated dispatch plan. In the second layer (real-time control), a distributed model predictive control (MPC) determines the active and reactive power set-points of the DERs so that their aggregated contribution tracks the dispatch plan while obeying to DERs operational constraints as well as the grid's ones. The proposed framework is experimentally validated on a real-scale microgrid that reproduces the network specifications of the CIGRE microgrid benchmark system.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2020.3015271</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; ADMM ; Computational modeling ; dispatch ; distributed control ; Distributed generation ; Electric power ; Energy sources ; Engineering Sciences ; model predictive control ; power distribution networks ; Predictive control ; Processor scheduling ; Reactive power ; Real-time systems ; Scheduling ; Stability ; Stochastic processes ; Voltage control</subject><ispartof>IEEE transactions on energy conversion, 2021-06, Vol.36 (2), p.1392-1402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-73b8d377b3df9b7a39700933a6107e97be4b4222a0a0a05579c1fa252998fe283</citedby><cites>FETCH-LOGICAL-c367t-73b8d377b3df9b7a39700933a6107e97be4b4222a0a0a05579c1fa252998fe283</cites><orcidid>0000-0002-7990-1471 ; 0000-0001-7073-9036 ; 0000-0002-9905-6092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9163265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9163265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03113436$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Rahul</creatorcontrib><creatorcontrib>Sossan, Fabrizio</creatorcontrib><creatorcontrib>Paolone, Mario</creatorcontrib><title>Grid-Aware Distributed Model Predictive Control of Heterogeneous Resources in a Distribution Network: Theory and Experimental Validation</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>In this article, we propose and experimentally validate a scheduling and control framework for distributed energy resources (DERs) that achieves to track a day-ahead dispatch plan of a distribution network hosting controllable and stochastic heterogeneous resources while respecting the local grid constraints on nodal voltages and lines ampacities. The framework consists of two algorithmic layers. In the first one (day-ahead scheduling), we determine an aggregated dispatch plan. In the second layer (real-time control), a distributed model predictive control (MPC) determines the active and reactive power set-points of the DERs so that their aggregated contribution tracks the dispatch plan while obeying to DERs operational constraints as well as the grid's ones. The proposed framework is experimentally validated on a real-scale microgrid that reproduces the network specifications of the CIGRE microgrid benchmark system.</description><subject>Active control</subject><subject>ADMM</subject><subject>Computational modeling</subject><subject>dispatch</subject><subject>distributed control</subject><subject>Distributed generation</subject><subject>Electric power</subject><subject>Energy sources</subject><subject>Engineering Sciences</subject><subject>model predictive control</subject><subject>power distribution networks</subject><subject>Predictive control</subject><subject>Processor scheduling</subject><subject>Reactive power</subject><subject>Real-time systems</subject><subject>Scheduling</subject><subject>Stability</subject><subject>Stochastic processes</subject><subject>Voltage control</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkUFrGzEQhUVJoY7TeyAXQU85rDOSrNWqN-O6dsBpQnF7Fdrd2UTpduVIst38g_7s7OKQMIeB4XuPmXmEnDOYMAb6arOYTzhwmAhgkiv2gYyYlEUGIPUJGUFRyKzQuf5ETmN8BGBTydmI_F8GV2ezgw1Iv7mYgit3CWt642ts6V3A2lXJ7ZHOfZeCb6lv6AoTBn-PHfpdpD8x-l2oMFLXUftu4nxHf2A6-PDnK908oA_P1HY1XfzbYnB_sUu2pb9t62o7sGfkY2PbiJ9f-5j8-r7YzFfZ-nZ5PZ-ts0rkKmVKlEUtlCpF3ehSWaEVgBbC5gwUalXitJxyzi0MJaXSFWssl1zrokFeiDG5PPo-2NZs-0VseDbeOrOarc0wA8GYmIp8z3r2y5HdBv-0w5jMY39q169nuOz_zKDgoqfgSFXBxxiwebNlYIZsTJ-NGbIxr9n0koujxCHiG65ZLnguxQuzgIqr</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gupta, Rahul</creator><creator>Sossan, Fabrizio</creator><creator>Paolone, Mario</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7990-1471</orcidid><orcidid>https://orcid.org/0000-0001-7073-9036</orcidid><orcidid>https://orcid.org/0000-0002-9905-6092</orcidid></search><sort><creationdate>20210601</creationdate><title>Grid-Aware Distributed Model Predictive Control of Heterogeneous Resources in a Distribution Network: Theory and Experimental Validation</title><author>Gupta, Rahul ; Sossan, Fabrizio ; Paolone, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-73b8d377b3df9b7a39700933a6107e97be4b4222a0a0a05579c1fa252998fe283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>ADMM</topic><topic>Computational modeling</topic><topic>dispatch</topic><topic>distributed control</topic><topic>Distributed generation</topic><topic>Electric power</topic><topic>Energy sources</topic><topic>Engineering Sciences</topic><topic>model predictive control</topic><topic>power distribution networks</topic><topic>Predictive control</topic><topic>Processor scheduling</topic><topic>Reactive power</topic><topic>Real-time systems</topic><topic>Scheduling</topic><topic>Stability</topic><topic>Stochastic processes</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Rahul</creatorcontrib><creatorcontrib>Sossan, Fabrizio</creatorcontrib><creatorcontrib>Paolone, Mario</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gupta, Rahul</au><au>Sossan, Fabrizio</au><au>Paolone, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid-Aware Distributed Model Predictive Control of Heterogeneous Resources in a Distribution Network: Theory and Experimental Validation</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>36</volume><issue>2</issue><spage>1392</spage><epage>1402</epage><pages>1392-1402</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>In this article, we propose and experimentally validate a scheduling and control framework for distributed energy resources (DERs) that achieves to track a day-ahead dispatch plan of a distribution network hosting controllable and stochastic heterogeneous resources while respecting the local grid constraints on nodal voltages and lines ampacities. The framework consists of two algorithmic layers. In the first one (day-ahead scheduling), we determine an aggregated dispatch plan. In the second layer (real-time control), a distributed model predictive control (MPC) determines the active and reactive power set-points of the DERs so that their aggregated contribution tracks the dispatch plan while obeying to DERs operational constraints as well as the grid's ones. The proposed framework is experimentally validated on a real-scale microgrid that reproduces the network specifications of the CIGRE microgrid benchmark system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2020.3015271</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7990-1471</orcidid><orcidid>https://orcid.org/0000-0001-7073-9036</orcidid><orcidid>https://orcid.org/0000-0002-9905-6092</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2021-06, Vol.36 (2), p.1392-1402 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEC_2020_3015271 |
source | IEEE Electronic Library (IEL) |
subjects | Active control ADMM Computational modeling dispatch distributed control Distributed generation Electric power Energy sources Engineering Sciences model predictive control power distribution networks Predictive control Processor scheduling Reactive power Real-time systems Scheduling Stability Stochastic processes Voltage control |
title | Grid-Aware Distributed Model Predictive Control of Heterogeneous Resources in a Distribution Network: Theory and Experimental Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid-Aware%20Distributed%20Model%20Predictive%20Control%20of%20Heterogeneous%20Resources%20in%20a%20Distribution%20Network:%20Theory%20and%20Experimental%20Validation&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Gupta,%20Rahul&rft.date=2021-06-01&rft.volume=36&rft.issue=2&rft.spage=1392&rft.epage=1402&rft.pages=1392-1402&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2020.3015271&rft_dat=%3Cproquest_RIE%3E2530110823%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530110823&rft_id=info:pmid/&rft_ieee_id=9163265&rfr_iscdi=true |