Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding

The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2019-12, Vol.34 (4), p.2158-2167
Hauptverfasser: Silva, Andre M., Ferreira, Fernando J. T. E., Cistelecan, Mihail V., Antunes, Carlos Henggeler
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2167
container_issue 4
container_start_page 2158
container_title IEEE transactions on energy conversion
container_volume 34
creator Silva, Andre M.
Ferreira, Fernando J. T. E.
Cistelecan, Mihail V.
Antunes, Carlos Henggeler
description The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Recent studies focus on stator winding optimization, because of its high loss share. In this paper, a general multilayer winding configuration is proposed for winding design optimization for multiphase symmetrical machines, by combining multilayer integer-slot, fractional-slot, and fractional-slot concentrated windings. The constrained minimization of the airgap magnetomotive force harmonic distortion and winding resistance is solved by the hybridization of differential evolution with a non-dominating sorting algorithm. A framework is provided for replication purposes. An experimental application example of standard and optimized windings is included for performance assessment. The optimized winding leads to a significant motor efficiency gain, while reducing the amount of copper needed for manufacturing.
doi_str_mv 10.1109/TEC.2019.2935009
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2019_2935009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8795518</ieee_id><sourcerecordid>2317727276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-485c4820bec0c7c58f6dbfe7ca5a537e0c0c48b28535867fdde124b1581c319b3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKfvgi8FnztzadMmj6NuU5gMZOJjSNPrzOjamnTC9tfb2SH3cMfd930HP0LugU4AqHxaz7IJoyAnTEacUnlBRsC5CCnl8pKMqBA8FDKR1-TG-y2lEHMGI_L-tq862-RbNJ39weAZvd3Uwart7M4edX-qg6YMFlij05U9YhH8OSp9QDeM7Zf2GEyz4NPWha03t-Sq1JXHu3Mfk4_5bJ29hMvV4jWbLkPDJHRhLLiJBaM5GmpSw0WZFHmJqdFc8yhF2q9jkTPBIy6StCwKBBbnwAWYCGQejcnjkNu65nuPvlPbZu_q_qViEaQp6yvpVXRQGdd477BUrbM77Q4KqDqRUz05dSKnzuR6y8NgsYj4Lxep5BxE9Avx9Wo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317727276</pqid></control><display><type>article</type><title>Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding</title><source>IEEE Electronic Library (IEL)</source><creator>Silva, Andre M. ; Ferreira, Fernando J. T. E. ; Cistelecan, Mihail V. ; Antunes, Carlos Henggeler</creator><creatorcontrib>Silva, Andre M. ; Ferreira, Fernando J. T. E. ; Cistelecan, Mihail V. ; Antunes, Carlos Henggeler</creatorcontrib><description>The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Recent studies focus on stator winding optimization, because of its high loss share. In this paper, a general multilayer winding configuration is proposed for winding design optimization for multiphase symmetrical machines, by combining multilayer integer-slot, fractional-slot, and fractional-slot concentrated windings. The constrained minimization of the airgap magnetomotive force harmonic distortion and winding resistance is solved by the hybridization of differential evolution with a non-dominating sorting algorithm. A framework is provided for replication purposes. An experimental application example of standard and optimized windings is included for performance assessment. The optimized winding leads to a significant motor efficiency gain, while reducing the amount of copper needed for manufacturing.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2019.2935009</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Coils (windings) ; Conductors ; Design optimization ; differential evolution ; Energy policy ; Evolutionary algorithms ; Evolutionary computation ; fractional-slot concentrated winding ; fractional-slot winding ; Harmonic analysis ; Harmonic distortion ; induction motor ; integer-slot winding ; multilayer ; Multilayers ; Multiphase ; Multiple objective analysis ; Nonhomogeneous media ; Performance assessment ; Performance standards ; Power capacitors ; Rotating machinery ; Sorting algorithms ; spatial harmonics ; Stator winding ; Stator windings ; Winding ; winding resistance ; Windings</subject><ispartof>IEEE transactions on energy conversion, 2019-12, Vol.34 (4), p.2158-2167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-485c4820bec0c7c58f6dbfe7ca5a537e0c0c48b28535867fdde124b1581c319b3</citedby><cites>FETCH-LOGICAL-c291t-485c4820bec0c7c58f6dbfe7ca5a537e0c0c48b28535867fdde124b1581c319b3</cites><orcidid>0000-0001-8726-3222 ; 0000-0003-4754-2168 ; 0000-0002-1823-2892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8795518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8795518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silva, Andre M.</creatorcontrib><creatorcontrib>Ferreira, Fernando J. T. E.</creatorcontrib><creatorcontrib>Cistelecan, Mihail V.</creatorcontrib><creatorcontrib>Antunes, Carlos Henggeler</creatorcontrib><title>Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Recent studies focus on stator winding optimization, because of its high loss share. In this paper, a general multilayer winding configuration is proposed for winding design optimization for multiphase symmetrical machines, by combining multilayer integer-slot, fractional-slot, and fractional-slot concentrated windings. The constrained minimization of the airgap magnetomotive force harmonic distortion and winding resistance is solved by the hybridization of differential evolution with a non-dominating sorting algorithm. A framework is provided for replication purposes. An experimental application example of standard and optimized windings is included for performance assessment. The optimized winding leads to a significant motor efficiency gain, while reducing the amount of copper needed for manufacturing.</description><subject>Classification</subject><subject>Coils (windings)</subject><subject>Conductors</subject><subject>Design optimization</subject><subject>differential evolution</subject><subject>Energy policy</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>fractional-slot concentrated winding</subject><subject>fractional-slot winding</subject><subject>Harmonic analysis</subject><subject>Harmonic distortion</subject><subject>induction motor</subject><subject>integer-slot winding</subject><subject>multilayer</subject><subject>Multilayers</subject><subject>Multiphase</subject><subject>Multiple objective analysis</subject><subject>Nonhomogeneous media</subject><subject>Performance assessment</subject><subject>Performance standards</subject><subject>Power capacitors</subject><subject>Rotating machinery</subject><subject>Sorting algorithms</subject><subject>spatial harmonics</subject><subject>Stator winding</subject><subject>Stator windings</subject><subject>Winding</subject><subject>winding resistance</subject><subject>Windings</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKfvgi8FnztzadMmj6NuU5gMZOJjSNPrzOjamnTC9tfb2SH3cMfd930HP0LugU4AqHxaz7IJoyAnTEacUnlBRsC5CCnl8pKMqBA8FDKR1-TG-y2lEHMGI_L-tq862-RbNJ39weAZvd3Uwart7M4edX-qg6YMFlij05U9YhH8OSp9QDeM7Zf2GEyz4NPWha03t-Sq1JXHu3Mfk4_5bJ29hMvV4jWbLkPDJHRhLLiJBaM5GmpSw0WZFHmJqdFc8yhF2q9jkTPBIy6StCwKBBbnwAWYCGQejcnjkNu65nuPvlPbZu_q_qViEaQp6yvpVXRQGdd477BUrbM77Q4KqDqRUz05dSKnzuR6y8NgsYj4Lxep5BxE9Avx9Wo0</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Silva, Andre M.</creator><creator>Ferreira, Fernando J. T. E.</creator><creator>Cistelecan, Mihail V.</creator><creator>Antunes, Carlos Henggeler</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8726-3222</orcidid><orcidid>https://orcid.org/0000-0003-4754-2168</orcidid><orcidid>https://orcid.org/0000-0002-1823-2892</orcidid></search><sort><creationdate>201912</creationdate><title>Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding</title><author>Silva, Andre M. ; Ferreira, Fernando J. T. E. ; Cistelecan, Mihail V. ; Antunes, Carlos Henggeler</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-485c4820bec0c7c58f6dbfe7ca5a537e0c0c48b28535867fdde124b1581c319b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Coils (windings)</topic><topic>Conductors</topic><topic>Design optimization</topic><topic>differential evolution</topic><topic>Energy policy</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>fractional-slot concentrated winding</topic><topic>fractional-slot winding</topic><topic>Harmonic analysis</topic><topic>Harmonic distortion</topic><topic>induction motor</topic><topic>integer-slot winding</topic><topic>multilayer</topic><topic>Multilayers</topic><topic>Multiphase</topic><topic>Multiple objective analysis</topic><topic>Nonhomogeneous media</topic><topic>Performance assessment</topic><topic>Performance standards</topic><topic>Power capacitors</topic><topic>Rotating machinery</topic><topic>Sorting algorithms</topic><topic>spatial harmonics</topic><topic>Stator winding</topic><topic>Stator windings</topic><topic>Winding</topic><topic>winding resistance</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Andre M.</creatorcontrib><creatorcontrib>Ferreira, Fernando J. T. E.</creatorcontrib><creatorcontrib>Cistelecan, Mihail V.</creatorcontrib><creatorcontrib>Antunes, Carlos Henggeler</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silva, Andre M.</au><au>Ferreira, Fernando J. T. E.</au><au>Cistelecan, Mihail V.</au><au>Antunes, Carlos Henggeler</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2019-12</date><risdate>2019</risdate><volume>34</volume><issue>4</issue><spage>2158</spage><epage>2167</epage><pages>2158-2167</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Recent studies focus on stator winding optimization, because of its high loss share. In this paper, a general multilayer winding configuration is proposed for winding design optimization for multiphase symmetrical machines, by combining multilayer integer-slot, fractional-slot, and fractional-slot concentrated windings. The constrained minimization of the airgap magnetomotive force harmonic distortion and winding resistance is solved by the hybridization of differential evolution with a non-dominating sorting algorithm. A framework is provided for replication purposes. An experimental application example of standard and optimized windings is included for performance assessment. The optimized winding leads to a significant motor efficiency gain, while reducing the amount of copper needed for manufacturing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2019.2935009</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8726-3222</orcidid><orcidid>https://orcid.org/0000-0003-4754-2168</orcidid><orcidid>https://orcid.org/0000-0002-1823-2892</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2019-12, Vol.34 (4), p.2158-2167
issn 0885-8969
1558-0059
language eng
recordid cdi_crossref_primary_10_1109_TEC_2019_2935009
source IEEE Electronic Library (IEL)
subjects Classification
Coils (windings)
Conductors
Design optimization
differential evolution
Energy policy
Evolutionary algorithms
Evolutionary computation
fractional-slot concentrated winding
fractional-slot winding
Harmonic analysis
Harmonic distortion
induction motor
integer-slot winding
multilayer
Multilayers
Multiphase
Multiple objective analysis
Nonhomogeneous media
Performance assessment
Performance standards
Power capacitors
Rotating machinery
Sorting algorithms
spatial harmonics
Stator winding
Stator windings
Winding
winding resistance
Windings
title Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Design%20Optimization%20of%20Generalized%20Multilayer%20Multiphase%20AC%20Winding&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Silva,%20Andre%20M.&rft.date=2019-12&rft.volume=34&rft.issue=4&rft.spage=2158&rft.epage=2167&rft.pages=2158-2167&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2019.2935009&rft_dat=%3Cproquest_RIE%3E2317727276%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317727276&rft_id=info:pmid/&rft_ieee_id=8795518&rfr_iscdi=true