Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding
The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Re...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2019-12, Vol.34 (4), p.2158-2167 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2167 |
---|---|
container_issue | 4 |
container_start_page | 2158 |
container_title | IEEE transactions on energy conversion |
container_volume | 34 |
creator | Silva, Andre M. Ferreira, Fernando J. T. E. Cistelecan, Mihail V. Antunes, Carlos Henggeler |
description | The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Recent studies focus on stator winding optimization, because of its high loss share. In this paper, a general multilayer winding configuration is proposed for winding design optimization for multiphase symmetrical machines, by combining multilayer integer-slot, fractional-slot, and fractional-slot concentrated windings. The constrained minimization of the airgap magnetomotive force harmonic distortion and winding resistance is solved by the hybridization of differential evolution with a non-dominating sorting algorithm. A framework is provided for replication purposes. An experimental application example of standard and optimized windings is included for performance assessment. The optimized winding leads to a significant motor efficiency gain, while reducing the amount of copper needed for manufacturing. |
doi_str_mv | 10.1109/TEC.2019.2935009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2019_2935009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8795518</ieee_id><sourcerecordid>2317727276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-485c4820bec0c7c58f6dbfe7ca5a537e0c0c48b28535867fdde124b1581c319b3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKfvgi8FnztzadMmj6NuU5gMZOJjSNPrzOjamnTC9tfb2SH3cMfd930HP0LugU4AqHxaz7IJoyAnTEacUnlBRsC5CCnl8pKMqBA8FDKR1-TG-y2lEHMGI_L-tq862-RbNJ39weAZvd3Uwart7M4edX-qg6YMFlij05U9YhH8OSp9QDeM7Zf2GEyz4NPWha03t-Sq1JXHu3Mfk4_5bJ29hMvV4jWbLkPDJHRhLLiJBaM5GmpSw0WZFHmJqdFc8yhF2q9jkTPBIy6StCwKBBbnwAWYCGQejcnjkNu65nuPvlPbZu_q_qViEaQp6yvpVXRQGdd477BUrbM77Q4KqDqRUz05dSKnzuR6y8NgsYj4Lxep5BxE9Avx9Wo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317727276</pqid></control><display><type>article</type><title>Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding</title><source>IEEE Electronic Library (IEL)</source><creator>Silva, Andre M. ; Ferreira, Fernando J. T. E. ; Cistelecan, Mihail V. ; Antunes, Carlos Henggeler</creator><creatorcontrib>Silva, Andre M. ; Ferreira, Fernando J. T. E. ; Cistelecan, Mihail V. ; Antunes, Carlos Henggeler</creatorcontrib><description>The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Recent studies focus on stator winding optimization, because of its high loss share. In this paper, a general multilayer winding configuration is proposed for winding design optimization for multiphase symmetrical machines, by combining multilayer integer-slot, fractional-slot, and fractional-slot concentrated windings. The constrained minimization of the airgap magnetomotive force harmonic distortion and winding resistance is solved by the hybridization of differential evolution with a non-dominating sorting algorithm. A framework is provided for replication purposes. An experimental application example of standard and optimized windings is included for performance assessment. The optimized winding leads to a significant motor efficiency gain, while reducing the amount of copper needed for manufacturing.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2019.2935009</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Coils (windings) ; Conductors ; Design optimization ; differential evolution ; Energy policy ; Evolutionary algorithms ; Evolutionary computation ; fractional-slot concentrated winding ; fractional-slot winding ; Harmonic analysis ; Harmonic distortion ; induction motor ; integer-slot winding ; multilayer ; Multilayers ; Multiphase ; Multiple objective analysis ; Nonhomogeneous media ; Performance assessment ; Performance standards ; Power capacitors ; Rotating machinery ; Sorting algorithms ; spatial harmonics ; Stator winding ; Stator windings ; Winding ; winding resistance ; Windings</subject><ispartof>IEEE transactions on energy conversion, 2019-12, Vol.34 (4), p.2158-2167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-485c4820bec0c7c58f6dbfe7ca5a537e0c0c48b28535867fdde124b1581c319b3</citedby><cites>FETCH-LOGICAL-c291t-485c4820bec0c7c58f6dbfe7ca5a537e0c0c48b28535867fdde124b1581c319b3</cites><orcidid>0000-0001-8726-3222 ; 0000-0003-4754-2168 ; 0000-0002-1823-2892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8795518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8795518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silva, Andre M.</creatorcontrib><creatorcontrib>Ferreira, Fernando J. T. E.</creatorcontrib><creatorcontrib>Cistelecan, Mihail V.</creatorcontrib><creatorcontrib>Antunes, Carlos Henggeler</creatorcontrib><title>Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Recent studies focus on stator winding optimization, because of its high loss share. In this paper, a general multilayer winding configuration is proposed for winding design optimization for multiphase symmetrical machines, by combining multilayer integer-slot, fractional-slot, and fractional-slot concentrated windings. The constrained minimization of the airgap magnetomotive force harmonic distortion and winding resistance is solved by the hybridization of differential evolution with a non-dominating sorting algorithm. A framework is provided for replication purposes. An experimental application example of standard and optimized windings is included for performance assessment. The optimized winding leads to a significant motor efficiency gain, while reducing the amount of copper needed for manufacturing.</description><subject>Classification</subject><subject>Coils (windings)</subject><subject>Conductors</subject><subject>Design optimization</subject><subject>differential evolution</subject><subject>Energy policy</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>fractional-slot concentrated winding</subject><subject>fractional-slot winding</subject><subject>Harmonic analysis</subject><subject>Harmonic distortion</subject><subject>induction motor</subject><subject>integer-slot winding</subject><subject>multilayer</subject><subject>Multilayers</subject><subject>Multiphase</subject><subject>Multiple objective analysis</subject><subject>Nonhomogeneous media</subject><subject>Performance assessment</subject><subject>Performance standards</subject><subject>Power capacitors</subject><subject>Rotating machinery</subject><subject>Sorting algorithms</subject><subject>spatial harmonics</subject><subject>Stator winding</subject><subject>Stator windings</subject><subject>Winding</subject><subject>winding resistance</subject><subject>Windings</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKfvgi8FnztzadMmj6NuU5gMZOJjSNPrzOjamnTC9tfb2SH3cMfd930HP0LugU4AqHxaz7IJoyAnTEacUnlBRsC5CCnl8pKMqBA8FDKR1-TG-y2lEHMGI_L-tq862-RbNJ39weAZvd3Uwart7M4edX-qg6YMFlij05U9YhH8OSp9QDeM7Zf2GEyz4NPWha03t-Sq1JXHu3Mfk4_5bJ29hMvV4jWbLkPDJHRhLLiJBaM5GmpSw0WZFHmJqdFc8yhF2q9jkTPBIy6StCwKBBbnwAWYCGQejcnjkNu65nuPvlPbZu_q_qViEaQp6yvpVXRQGdd477BUrbM77Q4KqDqRUz05dSKnzuR6y8NgsYj4Lxep5BxE9Avx9Wo0</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Silva, Andre M.</creator><creator>Ferreira, Fernando J. T. E.</creator><creator>Cistelecan, Mihail V.</creator><creator>Antunes, Carlos Henggeler</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8726-3222</orcidid><orcidid>https://orcid.org/0000-0003-4754-2168</orcidid><orcidid>https://orcid.org/0000-0002-1823-2892</orcidid></search><sort><creationdate>201912</creationdate><title>Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding</title><author>Silva, Andre M. ; Ferreira, Fernando J. T. E. ; Cistelecan, Mihail V. ; Antunes, Carlos Henggeler</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-485c4820bec0c7c58f6dbfe7ca5a537e0c0c48b28535867fdde124b1581c319b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Coils (windings)</topic><topic>Conductors</topic><topic>Design optimization</topic><topic>differential evolution</topic><topic>Energy policy</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>fractional-slot concentrated winding</topic><topic>fractional-slot winding</topic><topic>Harmonic analysis</topic><topic>Harmonic distortion</topic><topic>induction motor</topic><topic>integer-slot winding</topic><topic>multilayer</topic><topic>Multilayers</topic><topic>Multiphase</topic><topic>Multiple objective analysis</topic><topic>Nonhomogeneous media</topic><topic>Performance assessment</topic><topic>Performance standards</topic><topic>Power capacitors</topic><topic>Rotating machinery</topic><topic>Sorting algorithms</topic><topic>spatial harmonics</topic><topic>Stator winding</topic><topic>Stator windings</topic><topic>Winding</topic><topic>winding resistance</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Andre M.</creatorcontrib><creatorcontrib>Ferreira, Fernando J. T. E.</creatorcontrib><creatorcontrib>Cistelecan, Mihail V.</creatorcontrib><creatorcontrib>Antunes, Carlos Henggeler</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silva, Andre M.</au><au>Ferreira, Fernando J. T. E.</au><au>Cistelecan, Mihail V.</au><au>Antunes, Carlos Henggeler</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2019-12</date><risdate>2019</risdate><volume>34</volume><issue>4</issue><spage>2158</spage><epage>2167</epage><pages>2158-2167</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>The need for higher efficiency motors is becoming more relevant due to recent policies adopted in most advanced economies, which are adopting new minimum energy performance standards. A great effort to optimize several parts of rotating electric machines is being done to fulfill that requirement. Recent studies focus on stator winding optimization, because of its high loss share. In this paper, a general multilayer winding configuration is proposed for winding design optimization for multiphase symmetrical machines, by combining multilayer integer-slot, fractional-slot, and fractional-slot concentrated windings. The constrained minimization of the airgap magnetomotive force harmonic distortion and winding resistance is solved by the hybridization of differential evolution with a non-dominating sorting algorithm. A framework is provided for replication purposes. An experimental application example of standard and optimized windings is included for performance assessment. The optimized winding leads to a significant motor efficiency gain, while reducing the amount of copper needed for manufacturing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2019.2935009</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8726-3222</orcidid><orcidid>https://orcid.org/0000-0003-4754-2168</orcidid><orcidid>https://orcid.org/0000-0002-1823-2892</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2019-12, Vol.34 (4), p.2158-2167 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEC_2019_2935009 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Coils (windings) Conductors Design optimization differential evolution Energy policy Evolutionary algorithms Evolutionary computation fractional-slot concentrated winding fractional-slot winding Harmonic analysis Harmonic distortion induction motor integer-slot winding multilayer Multilayers Multiphase Multiple objective analysis Nonhomogeneous media Performance assessment Performance standards Power capacitors Rotating machinery Sorting algorithms spatial harmonics Stator winding Stator windings Winding winding resistance Windings |
title | Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Design%20Optimization%20of%20Generalized%20Multilayer%20Multiphase%20AC%20Winding&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Silva,%20Andre%20M.&rft.date=2019-12&rft.volume=34&rft.issue=4&rft.spage=2158&rft.epage=2167&rft.pages=2158-2167&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2019.2935009&rft_dat=%3Cproquest_RIE%3E2317727276%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317727276&rft_id=info:pmid/&rft_ieee_id=8795518&rfr_iscdi=true |