A Novel Neural Network Vector Control Technique for Induction Motor Drive
This paper proposes a novel neural network (NN)-based vector control method for a three-phase induction motor. The proposed NN vector control utilizes the rotor flux-oriented reference frame, and the role of the NN controller is to substitute the two decoupled current-loop proportional-integral (PI)...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2015-12, Vol.30 (4), p.1428-1437 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1437 |
---|---|
container_issue | 4 |
container_start_page | 1428 |
container_title | IEEE transactions on energy conversion |
container_volume | 30 |
creator | Fu, Xingang Li, Shuhui |
description | This paper proposes a novel neural network (NN)-based vector control method for a three-phase induction motor. The proposed NN vector control utilizes the rotor flux-oriented reference frame, and the role of the NN controller is to substitute the two decoupled current-loop proportional-integral (PI) controllers in conventional vector control techniques. The objective of NN training is to approximate optimal control and the NN controller was trained by Levenberg-Marquardt (LM) algorithm. Forward Accumulation Through Time algorithm for induction motor was developed to calculate Jacobian matrix needed by the LM algorithm. The simulations showed that the NN vector control can provide better current tracking ability than the conventional vector control, such as less oscillations and low harmonics. Especially, the NN vector control can better overcome the problem of detuning effects than the conventional vector control. The hardware experiments further demonstrated the great advantage of the NN vector control. The NN vector control can succeed in driving the induction motor without audible noise using relatively lower switching frequency or lower sampling rate compared with the conventional vector control, and thus has the potential to improve efficiency and reduce size and cost of an induction motor drive system. |
doi_str_mv | 10.1109/TEC.2015.2436914 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2015_2436914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7122313</ieee_id><sourcerecordid>3883669051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a9aa5d1533c3b766858ce7ce237d66dee2da454ee953ae16c422e135563296bf3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_cruscRWC7Veqtdlu5lgas3WTVLx35vQ4umF4XlnhoeQW6ATAGoe1rN8wijICRNcGRBnZARS6pRSac7JiGotU22UuSRXTbOlFIRkMCKLabIKB9wlK-yiG6L9CfEzeUffhpjkoW5j2CVr9B919d1hUvbTRV10vq1CnbyEgXqM1QGvyUXpdg3enHJM3uazdf6cLl-fFvl0mXquoE2dcU4WIDn3fJMppaX2mHlkPCuUKhBZ4YQUiEZyh6C8YAyBS6k4M2pT8jG5P-7dx9A_1LR2G7pY9yctZFxrIY3gPUWPlI-haSKWdh-rLxd_LVA7CLO9MDsIsydhfeXuWKkQ8R_PgDEOnP8Bc_llvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738845943</pqid></control><display><type>article</type><title>A Novel Neural Network Vector Control Technique for Induction Motor Drive</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Xingang ; Li, Shuhui</creator><creatorcontrib>Fu, Xingang ; Li, Shuhui</creatorcontrib><description>This paper proposes a novel neural network (NN)-based vector control method for a three-phase induction motor. The proposed NN vector control utilizes the rotor flux-oriented reference frame, and the role of the NN controller is to substitute the two decoupled current-loop proportional-integral (PI) controllers in conventional vector control techniques. The objective of NN training is to approximate optimal control and the NN controller was trained by Levenberg-Marquardt (LM) algorithm. Forward Accumulation Through Time algorithm for induction motor was developed to calculate Jacobian matrix needed by the LM algorithm. The simulations showed that the NN vector control can provide better current tracking ability than the conventional vector control, such as less oscillations and low harmonics. Especially, the NN vector control can better overcome the problem of detuning effects than the conventional vector control. The hardware experiments further demonstrated the great advantage of the NN vector control. The NN vector control can succeed in driving the induction motor without audible noise using relatively lower switching frequency or lower sampling rate compared with the conventional vector control, and thus has the potential to improve efficiency and reduce size and cost of an induction motor drive system.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2015.2436914</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximate optimal control ; Artificial neural networks ; forward accumulation through time ; induction motor ; Induction motors ; Levenberg-Marquardt ; Machine vector control ; Motors ; neural network vector control ; Neural networks ; Rotors ; Stators ; Training</subject><ispartof>IEEE transactions on energy conversion, 2015-12, Vol.30 (4), p.1428-1437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a9aa5d1533c3b766858ce7ce237d66dee2da454ee953ae16c422e135563296bf3</citedby><cites>FETCH-LOGICAL-c361t-a9aa5d1533c3b766858ce7ce237d66dee2da454ee953ae16c422e135563296bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7122313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7122313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Xingang</creatorcontrib><creatorcontrib>Li, Shuhui</creatorcontrib><title>A Novel Neural Network Vector Control Technique for Induction Motor Drive</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This paper proposes a novel neural network (NN)-based vector control method for a three-phase induction motor. The proposed NN vector control utilizes the rotor flux-oriented reference frame, and the role of the NN controller is to substitute the two decoupled current-loop proportional-integral (PI) controllers in conventional vector control techniques. The objective of NN training is to approximate optimal control and the NN controller was trained by Levenberg-Marquardt (LM) algorithm. Forward Accumulation Through Time algorithm for induction motor was developed to calculate Jacobian matrix needed by the LM algorithm. The simulations showed that the NN vector control can provide better current tracking ability than the conventional vector control, such as less oscillations and low harmonics. Especially, the NN vector control can better overcome the problem of detuning effects than the conventional vector control. The hardware experiments further demonstrated the great advantage of the NN vector control. The NN vector control can succeed in driving the induction motor without audible noise using relatively lower switching frequency or lower sampling rate compared with the conventional vector control, and thus has the potential to improve efficiency and reduce size and cost of an induction motor drive system.</description><subject>Algorithms</subject><subject>Approximate optimal control</subject><subject>Artificial neural networks</subject><subject>forward accumulation through time</subject><subject>induction motor</subject><subject>Induction motors</subject><subject>Levenberg-Marquardt</subject><subject>Machine vector control</subject><subject>Motors</subject><subject>neural network vector control</subject><subject>Neural networks</subject><subject>Rotors</subject><subject>Stators</subject><subject>Training</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_cruscRWC7Veqtdlu5lgas3WTVLx35vQ4umF4XlnhoeQW6ATAGoe1rN8wijICRNcGRBnZARS6pRSac7JiGotU22UuSRXTbOlFIRkMCKLabIKB9wlK-yiG6L9CfEzeUffhpjkoW5j2CVr9B919d1hUvbTRV10vq1CnbyEgXqM1QGvyUXpdg3enHJM3uazdf6cLl-fFvl0mXquoE2dcU4WIDn3fJMppaX2mHlkPCuUKhBZ4YQUiEZyh6C8YAyBS6k4M2pT8jG5P-7dx9A_1LR2G7pY9yctZFxrIY3gPUWPlI-haSKWdh-rLxd_LVA7CLO9MDsIsydhfeXuWKkQ8R_PgDEOnP8Bc_llvQ</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Fu, Xingang</creator><creator>Li, Shuhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20151201</creationdate><title>A Novel Neural Network Vector Control Technique for Induction Motor Drive</title><author>Fu, Xingang ; Li, Shuhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a9aa5d1533c3b766858ce7ce237d66dee2da454ee953ae16c422e135563296bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximate optimal control</topic><topic>Artificial neural networks</topic><topic>forward accumulation through time</topic><topic>induction motor</topic><topic>Induction motors</topic><topic>Levenberg-Marquardt</topic><topic>Machine vector control</topic><topic>Motors</topic><topic>neural network vector control</topic><topic>Neural networks</topic><topic>Rotors</topic><topic>Stators</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xingang</creatorcontrib><creatorcontrib>Li, Shuhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Xingang</au><au>Li, Shuhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Neural Network Vector Control Technique for Induction Motor Drive</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>30</volume><issue>4</issue><spage>1428</spage><epage>1437</epage><pages>1428-1437</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This paper proposes a novel neural network (NN)-based vector control method for a three-phase induction motor. The proposed NN vector control utilizes the rotor flux-oriented reference frame, and the role of the NN controller is to substitute the two decoupled current-loop proportional-integral (PI) controllers in conventional vector control techniques. The objective of NN training is to approximate optimal control and the NN controller was trained by Levenberg-Marquardt (LM) algorithm. Forward Accumulation Through Time algorithm for induction motor was developed to calculate Jacobian matrix needed by the LM algorithm. The simulations showed that the NN vector control can provide better current tracking ability than the conventional vector control, such as less oscillations and low harmonics. Especially, the NN vector control can better overcome the problem of detuning effects than the conventional vector control. The hardware experiments further demonstrated the great advantage of the NN vector control. The NN vector control can succeed in driving the induction motor without audible noise using relatively lower switching frequency or lower sampling rate compared with the conventional vector control, and thus has the potential to improve efficiency and reduce size and cost of an induction motor drive system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2015.2436914</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2015-12, Vol.30 (4), p.1428-1437 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEC_2015_2436914 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximate optimal control Artificial neural networks forward accumulation through time induction motor Induction motors Levenberg-Marquardt Machine vector control Motors neural network vector control Neural networks Rotors Stators Training |
title | A Novel Neural Network Vector Control Technique for Induction Motor Drive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T00%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Neural%20Network%20Vector%20Control%20Technique%20for%20Induction%20Motor%20Drive&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Fu,%20Xingang&rft.date=2015-12-01&rft.volume=30&rft.issue=4&rft.spage=1428&rft.epage=1437&rft.pages=1428-1437&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2015.2436914&rft_dat=%3Cproquest_RIE%3E3883669051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738845943&rft_id=info:pmid/&rft_ieee_id=7122313&rfr_iscdi=true |