Mathematical Modeling of Li-Ion Battery Using Genetic Algorithm Approach for V2G Applications

This paper presents an electric circuit-based battery and a capacity fade model suitable for electric vehicles (EVs) in vehicle-to-grid applications. The circuit parameters of the battery model (BM) are extracted using genetic algorithm-based optimization method. A control algorithm has been develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2014-06, Vol.29 (2), p.332-343
Hauptverfasser: Thirugnanam, Kannan, Ezhil Reena, Joy T. P., Singh, Mukesh, Kumar, Praveen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 2
container_start_page 332
container_title IEEE transactions on energy conversion
container_volume 29
creator Thirugnanam, Kannan
Ezhil Reena, Joy T. P.
Singh, Mukesh
Kumar, Praveen
description This paper presents an electric circuit-based battery and a capacity fade model suitable for electric vehicles (EVs) in vehicle-to-grid applications. The circuit parameters of the battery model (BM) are extracted using genetic algorithm-based optimization method. A control algorithm has been developed for the battery, which calculates the processed energy, charge or discharge rate, and state of charge limits of the battery in order to satisfy the future requirements of EVs. A complete capacity fade analysis has been carried out to quantify the capacity loss with respect to processed energy and cycling. The BM is tested by simulation and its characteristics such as charge and discharge voltage, available and stored energy, battery power, and its capacity loss are extracted. The propriety of the proposed model is validated by superimposing the results with four typical manufacturers' data. The battery profiles of different manufacturers' like EIG, Sony, Panasonic, and Sanyo have been taken and their characteristics are compared with proposed models. The obtained battery characteristics are in close agreement with the measured (manufacturers' catalogue) characteristics.
doi_str_mv 10.1109/TEC.2014.2298460
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2014_2298460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6716979</ieee_id><sourcerecordid>3377660681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-51746fb7648fe2f9e187f91918f7d0dac3890c1d963ed0b85aa6965b15c9579b3</originalsourceid><addsrcrecordid>eNpdkE1rAjEURUNpodZ2X-gm0E03Y_NmJh9vacVaQelGuytDnEl0ZJzYZFz47xtRuujqweXcy-MQ8ghsAMDwdTEeDVIG-SBNUeWCXZEecK4Sxjhekx5TiicKBd6SuxC2LJI8hR75nutuY3a6q0vd0LmrTFO3a-osndXJ1LX0TXed8Ue6DKd8YloTUTps1s7X3WZHh_u9d7rcUOs8_Uonp6CJY13t2nBPbqxugnm43D5Zvo8Xo49k9jmZjoazpMzSvEs4yFzYlRS5sia1aEBJi4CgrKxYpctMISuhQpGZiq0U11qg4CvgJXKJq6xPXs678ZefgwldsatDaZpGt8YdQhFNoASAVEX0-R-6dQffxu8ilXNUIpciUuxMld6F4I0t9r7eaX8sgBUn30X0XZx8FxffsfJ0rtTGmD9cSBAoMfsFevJ6RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545986476</pqid></control><display><type>article</type><title>Mathematical Modeling of Li-Ion Battery Using Genetic Algorithm Approach for V2G Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Thirugnanam, Kannan ; Ezhil Reena, Joy T. P. ; Singh, Mukesh ; Kumar, Praveen</creator><creatorcontrib>Thirugnanam, Kannan ; Ezhil Reena, Joy T. P. ; Singh, Mukesh ; Kumar, Praveen</creatorcontrib><description>This paper presents an electric circuit-based battery and a capacity fade model suitable for electric vehicles (EVs) in vehicle-to-grid applications. The circuit parameters of the battery model (BM) are extracted using genetic algorithm-based optimization method. A control algorithm has been developed for the battery, which calculates the processed energy, charge or discharge rate, and state of charge limits of the battery in order to satisfy the future requirements of EVs. A complete capacity fade analysis has been carried out to quantify the capacity loss with respect to processed energy and cycling. The BM is tested by simulation and its characteristics such as charge and discharge voltage, available and stored energy, battery power, and its capacity loss are extracted. The propriety of the proposed model is validated by superimposing the results with four typical manufacturers' data. The battery profiles of different manufacturers' like EIG, Sony, Panasonic, and Sanyo have been taken and their characteristics are compared with proposed models. The obtained battery characteristics are in close agreement with the measured (manufacturers' catalogue) characteristics.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2014.2298460</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batteries ; capacity loss ; Charge ; Circuits ; Control algorithms ; Discharges (electric) ; Electric charge ; Electric vehicles ; electric vehicles (EVs) ; genetic algorithm (GA) ; Genetic algorithms ; Integrated circuit modeling ; Lithium-ion batteries ; Mathematical model ; Mathematical models ; Polynomials ; vehicle-to-grid (V2G)</subject><ispartof>IEEE transactions on energy conversion, 2014-06, Vol.29 (2), p.332-343</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-51746fb7648fe2f9e187f91918f7d0dac3890c1d963ed0b85aa6965b15c9579b3</citedby><cites>FETCH-LOGICAL-c324t-51746fb7648fe2f9e187f91918f7d0dac3890c1d963ed0b85aa6965b15c9579b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6716979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6716979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thirugnanam, Kannan</creatorcontrib><creatorcontrib>Ezhil Reena, Joy T. P.</creatorcontrib><creatorcontrib>Singh, Mukesh</creatorcontrib><creatorcontrib>Kumar, Praveen</creatorcontrib><title>Mathematical Modeling of Li-Ion Battery Using Genetic Algorithm Approach for V2G Applications</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This paper presents an electric circuit-based battery and a capacity fade model suitable for electric vehicles (EVs) in vehicle-to-grid applications. The circuit parameters of the battery model (BM) are extracted using genetic algorithm-based optimization method. A control algorithm has been developed for the battery, which calculates the processed energy, charge or discharge rate, and state of charge limits of the battery in order to satisfy the future requirements of EVs. A complete capacity fade analysis has been carried out to quantify the capacity loss with respect to processed energy and cycling. The BM is tested by simulation and its characteristics such as charge and discharge voltage, available and stored energy, battery power, and its capacity loss are extracted. The propriety of the proposed model is validated by superimposing the results with four typical manufacturers' data. The battery profiles of different manufacturers' like EIG, Sony, Panasonic, and Sanyo have been taken and their characteristics are compared with proposed models. The obtained battery characteristics are in close agreement with the measured (manufacturers' catalogue) characteristics.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>capacity loss</subject><subject>Charge</subject><subject>Circuits</subject><subject>Control algorithms</subject><subject>Discharges (electric)</subject><subject>Electric charge</subject><subject>Electric vehicles</subject><subject>electric vehicles (EVs)</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Integrated circuit modeling</subject><subject>Lithium-ion batteries</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>vehicle-to-grid (V2G)</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rAjEURUNpodZ2X-gm0E03Y_NmJh9vacVaQelGuytDnEl0ZJzYZFz47xtRuujqweXcy-MQ8ghsAMDwdTEeDVIG-SBNUeWCXZEecK4Sxjhekx5TiicKBd6SuxC2LJI8hR75nutuY3a6q0vd0LmrTFO3a-osndXJ1LX0TXed8Ue6DKd8YloTUTps1s7X3WZHh_u9d7rcUOs8_Uonp6CJY13t2nBPbqxugnm43D5Zvo8Xo49k9jmZjoazpMzSvEs4yFzYlRS5sia1aEBJi4CgrKxYpctMISuhQpGZiq0U11qg4CvgJXKJq6xPXs678ZefgwldsatDaZpGt8YdQhFNoASAVEX0-R-6dQffxu8ilXNUIpciUuxMld6F4I0t9r7eaX8sgBUn30X0XZx8FxffsfJ0rtTGmD9cSBAoMfsFevJ6RQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Thirugnanam, Kannan</creator><creator>Ezhil Reena, Joy T. P.</creator><creator>Singh, Mukesh</creator><creator>Kumar, Praveen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7SC</scope><scope>F28</scope><scope>H8D</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>Mathematical Modeling of Li-Ion Battery Using Genetic Algorithm Approach for V2G Applications</title><author>Thirugnanam, Kannan ; Ezhil Reena, Joy T. P. ; Singh, Mukesh ; Kumar, Praveen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-51746fb7648fe2f9e187f91918f7d0dac3890c1d963ed0b85aa6965b15c9579b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>capacity loss</topic><topic>Charge</topic><topic>Circuits</topic><topic>Control algorithms</topic><topic>Discharges (electric)</topic><topic>Electric charge</topic><topic>Electric vehicles</topic><topic>electric vehicles (EVs)</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Integrated circuit modeling</topic><topic>Lithium-ion batteries</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>vehicle-to-grid (V2G)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thirugnanam, Kannan</creatorcontrib><creatorcontrib>Ezhil Reena, Joy T. P.</creatorcontrib><creatorcontrib>Singh, Mukesh</creatorcontrib><creatorcontrib>Kumar, Praveen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thirugnanam, Kannan</au><au>Ezhil Reena, Joy T. P.</au><au>Singh, Mukesh</au><au>Kumar, Praveen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Li-Ion Battery Using Genetic Algorithm Approach for V2G Applications</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>29</volume><issue>2</issue><spage>332</spage><epage>343</epage><pages>332-343</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This paper presents an electric circuit-based battery and a capacity fade model suitable for electric vehicles (EVs) in vehicle-to-grid applications. The circuit parameters of the battery model (BM) are extracted using genetic algorithm-based optimization method. A control algorithm has been developed for the battery, which calculates the processed energy, charge or discharge rate, and state of charge limits of the battery in order to satisfy the future requirements of EVs. A complete capacity fade analysis has been carried out to quantify the capacity loss with respect to processed energy and cycling. The BM is tested by simulation and its characteristics such as charge and discharge voltage, available and stored energy, battery power, and its capacity loss are extracted. The propriety of the proposed model is validated by superimposing the results with four typical manufacturers' data. The battery profiles of different manufacturers' like EIG, Sony, Panasonic, and Sanyo have been taken and their characteristics are compared with proposed models. The obtained battery characteristics are in close agreement with the measured (manufacturers' catalogue) characteristics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2014.2298460</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2014-06, Vol.29 (2), p.332-343
issn 0885-8969
1558-0059
language eng
recordid cdi_crossref_primary_10_1109_TEC_2014_2298460
source IEEE Electronic Library (IEL)
subjects Algorithms
Batteries
capacity loss
Charge
Circuits
Control algorithms
Discharges (electric)
Electric charge
Electric vehicles
electric vehicles (EVs)
genetic algorithm (GA)
Genetic algorithms
Integrated circuit modeling
Lithium-ion batteries
Mathematical model
Mathematical models
Polynomials
vehicle-to-grid (V2G)
title Mathematical Modeling of Li-Ion Battery Using Genetic Algorithm Approach for V2G Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Li-Ion%20Battery%20Using%20Genetic%20Algorithm%20Approach%20for%20V2G%20Applications&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Thirugnanam,%20Kannan&rft.date=2014-06-01&rft.volume=29&rft.issue=2&rft.spage=332&rft.epage=343&rft.pages=332-343&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2014.2298460&rft_dat=%3Cproquest_RIE%3E3377660681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545986476&rft_id=info:pmid/&rft_ieee_id=6716979&rfr_iscdi=true