Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant
A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2010-12, Vol.25 (4), p.1063-1070 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1070 |
---|---|
container_issue | 4 |
container_start_page | 1063 |
container_title | IEEE transactions on energy conversion |
container_volume | 25 |
creator | Lee, Kwang Y Van Sickel, Joel H Hoffman, Jason A Won-Hee Jung Sung-Ho Kim |
description | A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires the partitioning of multiple subsystems, which are each represented by an individual NN that when combined form the whole plant model. Modified predictive optimal control was used to drive the plant to desired states; however, due to the computational intensity of this approach, it could not be executed quickly enough to satisfy project requirements. As an alternative, a reference governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning, which, while more complicated, satisfied the computational speed required for the controller to be realized. |
doi_str_mv | 10.1109/TEC.2010.2060488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2010_2060488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5594627</ieee_id><sourcerecordid>849488061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-463bb9d932c833ab8b7095990d4994cbdd867bba52a1d3e3e98cf5fb7f6634593</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcuCB09bk83HJket9QMKFWy9hmx2tt2y3dRkF_Hfm6XFg5cZZnjeYXgQuiZ4QghW98vZdJLhOGVYYCblCRoRzmWKMVenaISl5KlUQp2jixC2GBPGMzJCn1PXdt41DfjkCUK9bpPK-cQkc-PXkH5Y00CyajpvQr8Hb33d1XGXLFoL6XLjXb_eJI-uHvLv7nuojWm7S3RWmSbA1bGP0ep5tpy-pvPFy9v0YZ5amtEuZYIWhSoVzayk1BSyyLHiSuGSKcVsUZZS5EVheGZISYGCkrbiVZFXQlDGFR2ju8PdvXdfPYRO7-pgoYk_gOuDlkxFF1iQSN7-I7eu9218ThNMMRGE5yxS-EBZ70LwUOm9r3fG_0RID5519KwHz_roOUZuDpEaAP5wzhUTWU5_ASAaeFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030161574</pqid></control><display><type>article</type><title>Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Kwang Y ; Van Sickel, Joel H ; Hoffman, Jason A ; Won-Hee Jung ; Sung-Ho Kim</creator><creatorcontrib>Lee, Kwang Y ; Van Sickel, Joel H ; Hoffman, Jason A ; Won-Hee Jung ; Sung-Ho Kim</creatorcontrib><description>A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires the partitioning of multiple subsystems, which are each represented by an individual NN that when combined form the whole plant model. Modified predictive optimal control was used to drive the plant to desired states; however, due to the computational intensity of this approach, it could not be executed quickly enough to satisfy project requirements. As an alternative, a reference governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning, which, while more complicated, satisfied the computational speed required for the controller to be realized.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2010.2060488</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Boilers ; Gain tuning ; Intelligent control ; modified predictive optimal control (MPOC) ; Power generation ; Tuning ; Turbines ; ultrasupercritical (USC) power plant</subject><ispartof>IEEE transactions on energy conversion, 2010-12, Vol.25 (4), p.1063-1070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-463bb9d932c833ab8b7095990d4994cbdd867bba52a1d3e3e98cf5fb7f6634593</citedby><cites>FETCH-LOGICAL-c323t-463bb9d932c833ab8b7095990d4994cbdd867bba52a1d3e3e98cf5fb7f6634593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5594627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5594627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Kwang Y</creatorcontrib><creatorcontrib>Van Sickel, Joel H</creatorcontrib><creatorcontrib>Hoffman, Jason A</creatorcontrib><creatorcontrib>Won-Hee Jung</creatorcontrib><creatorcontrib>Sung-Ho Kim</creatorcontrib><title>Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires the partitioning of multiple subsystems, which are each represented by an individual NN that when combined form the whole plant model. Modified predictive optimal control was used to drive the plant to desired states; however, due to the computational intensity of this approach, it could not be executed quickly enough to satisfy project requirements. As an alternative, a reference governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning, which, while more complicated, satisfied the computational speed required for the controller to be realized.</description><subject>Artificial neural networks</subject><subject>Boilers</subject><subject>Gain tuning</subject><subject>Intelligent control</subject><subject>modified predictive optimal control (MPOC)</subject><subject>Power generation</subject><subject>Tuning</subject><subject>Turbines</subject><subject>ultrasupercritical (USC) power plant</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt3wcuCB09bk83HJket9QMKFWy9hmx2tt2y3dRkF_Hfm6XFg5cZZnjeYXgQuiZ4QghW98vZdJLhOGVYYCblCRoRzmWKMVenaISl5KlUQp2jixC2GBPGMzJCn1PXdt41DfjkCUK9bpPK-cQkc-PXkH5Y00CyajpvQr8Hb33d1XGXLFoL6XLjXb_eJI-uHvLv7nuojWm7S3RWmSbA1bGP0ep5tpy-pvPFy9v0YZ5amtEuZYIWhSoVzayk1BSyyLHiSuGSKcVsUZZS5EVheGZISYGCkrbiVZFXQlDGFR2ju8PdvXdfPYRO7-pgoYk_gOuDlkxFF1iQSN7-I7eu9218ThNMMRGE5yxS-EBZ70LwUOm9r3fG_0RID5519KwHz_roOUZuDpEaAP5wzhUTWU5_ASAaeFc</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Lee, Kwang Y</creator><creator>Van Sickel, Joel H</creator><creator>Hoffman, Jason A</creator><creator>Won-Hee Jung</creator><creator>Sung-Ho Kim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>201012</creationdate><title>Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant</title><author>Lee, Kwang Y ; Van Sickel, Joel H ; Hoffman, Jason A ; Won-Hee Jung ; Sung-Ho Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-463bb9d932c833ab8b7095990d4994cbdd867bba52a1d3e3e98cf5fb7f6634593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Boilers</topic><topic>Gain tuning</topic><topic>Intelligent control</topic><topic>modified predictive optimal control (MPOC)</topic><topic>Power generation</topic><topic>Tuning</topic><topic>Turbines</topic><topic>ultrasupercritical (USC) power plant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kwang Y</creatorcontrib><creatorcontrib>Van Sickel, Joel H</creatorcontrib><creatorcontrib>Hoffman, Jason A</creatorcontrib><creatorcontrib>Won-Hee Jung</creatorcontrib><creatorcontrib>Sung-Ho Kim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Kwang Y</au><au>Van Sickel, Joel H</au><au>Hoffman, Jason A</au><au>Won-Hee Jung</au><au>Sung-Ho Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2010-12</date><risdate>2010</risdate><volume>25</volume><issue>4</issue><spage>1063</spage><epage>1070</epage><pages>1063-1070</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires the partitioning of multiple subsystems, which are each represented by an individual NN that when combined form the whole plant model. Modified predictive optimal control was used to drive the plant to desired states; however, due to the computational intensity of this approach, it could not be executed quickly enough to satisfy project requirements. As an alternative, a reference governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning, which, while more complicated, satisfied the computational speed required for the controller to be realized.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2010.2060488</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2010-12, Vol.25 (4), p.1063-1070 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEC_2010_2060488 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Boilers Gain tuning Intelligent control modified predictive optimal control (MPOC) Power generation Tuning Turbines ultrasupercritical (USC) power plant |
title | Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controller%20Design%20for%20a%20Large-Scale%20Ultrasupercritical%20Once-Through%20Boiler%20Power%20Plant&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Lee,%20Kwang%20Y&rft.date=2010-12&rft.volume=25&rft.issue=4&rft.spage=1063&rft.epage=1070&rft.pages=1063-1070&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2010.2060488&rft_dat=%3Cproquest_RIE%3E849488061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030161574&rft_id=info:pmid/&rft_ieee_id=5594627&rfr_iscdi=true |