Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant

A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2010-12, Vol.25 (4), p.1063-1070
Hauptverfasser: Lee, Kwang Y, Van Sickel, Joel H, Hoffman, Jason A, Won-Hee Jung, Sung-Ho Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1070
container_issue 4
container_start_page 1063
container_title IEEE transactions on energy conversion
container_volume 25
creator Lee, Kwang Y
Van Sickel, Joel H
Hoffman, Jason A
Won-Hee Jung
Sung-Ho Kim
description A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires the partitioning of multiple subsystems, which are each represented by an individual NN that when combined form the whole plant model. Modified predictive optimal control was used to drive the plant to desired states; however, due to the computational intensity of this approach, it could not be executed quickly enough to satisfy project requirements. As an alternative, a reference governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning, which, while more complicated, satisfied the computational speed required for the controller to be realized.
doi_str_mv 10.1109/TEC.2010.2060488
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2010_2060488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5594627</ieee_id><sourcerecordid>849488061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-463bb9d932c833ab8b7095990d4994cbdd867bba52a1d3e3e98cf5fb7f6634593</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcuCB09bk83HJket9QMKFWy9hmx2tt2y3dRkF_Hfm6XFg5cZZnjeYXgQuiZ4QghW98vZdJLhOGVYYCblCRoRzmWKMVenaISl5KlUQp2jixC2GBPGMzJCn1PXdt41DfjkCUK9bpPK-cQkc-PXkH5Y00CyajpvQr8Hb33d1XGXLFoL6XLjXb_eJI-uHvLv7nuojWm7S3RWmSbA1bGP0ep5tpy-pvPFy9v0YZ5amtEuZYIWhSoVzayk1BSyyLHiSuGSKcVsUZZS5EVheGZISYGCkrbiVZFXQlDGFR2ju8PdvXdfPYRO7-pgoYk_gOuDlkxFF1iQSN7-I7eu9218ThNMMRGE5yxS-EBZ70LwUOm9r3fG_0RID5519KwHz_roOUZuDpEaAP5wzhUTWU5_ASAaeFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030161574</pqid></control><display><type>article</type><title>Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Kwang Y ; Van Sickel, Joel H ; Hoffman, Jason A ; Won-Hee Jung ; Sung-Ho Kim</creator><creatorcontrib>Lee, Kwang Y ; Van Sickel, Joel H ; Hoffman, Jason A ; Won-Hee Jung ; Sung-Ho Kim</creatorcontrib><description>A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires the partitioning of multiple subsystems, which are each represented by an individual NN that when combined form the whole plant model. Modified predictive optimal control was used to drive the plant to desired states; however, due to the computational intensity of this approach, it could not be executed quickly enough to satisfy project requirements. As an alternative, a reference governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning, which, while more complicated, satisfied the computational speed required for the controller to be realized.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2010.2060488</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Boilers ; Gain tuning ; Intelligent control ; modified predictive optimal control (MPOC) ; Power generation ; Tuning ; Turbines ; ultrasupercritical (USC) power plant</subject><ispartof>IEEE transactions on energy conversion, 2010-12, Vol.25 (4), p.1063-1070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-463bb9d932c833ab8b7095990d4994cbdd867bba52a1d3e3e98cf5fb7f6634593</citedby><cites>FETCH-LOGICAL-c323t-463bb9d932c833ab8b7095990d4994cbdd867bba52a1d3e3e98cf5fb7f6634593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5594627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5594627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Kwang Y</creatorcontrib><creatorcontrib>Van Sickel, Joel H</creatorcontrib><creatorcontrib>Hoffman, Jason A</creatorcontrib><creatorcontrib>Won-Hee Jung</creatorcontrib><creatorcontrib>Sung-Ho Kim</creatorcontrib><title>Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires the partitioning of multiple subsystems, which are each represented by an individual NN that when combined form the whole plant model. Modified predictive optimal control was used to drive the plant to desired states; however, due to the computational intensity of this approach, it could not be executed quickly enough to satisfy project requirements. As an alternative, a reference governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning, which, while more complicated, satisfied the computational speed required for the controller to be realized.</description><subject>Artificial neural networks</subject><subject>Boilers</subject><subject>Gain tuning</subject><subject>Intelligent control</subject><subject>modified predictive optimal control (MPOC)</subject><subject>Power generation</subject><subject>Tuning</subject><subject>Turbines</subject><subject>ultrasupercritical (USC) power plant</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt3wcuCB09bk83HJket9QMKFWy9hmx2tt2y3dRkF_Hfm6XFg5cZZnjeYXgQuiZ4QghW98vZdJLhOGVYYCblCRoRzmWKMVenaISl5KlUQp2jixC2GBPGMzJCn1PXdt41DfjkCUK9bpPK-cQkc-PXkH5Y00CyajpvQr8Hb33d1XGXLFoL6XLjXb_eJI-uHvLv7nuojWm7S3RWmSbA1bGP0ep5tpy-pvPFy9v0YZ5amtEuZYIWhSoVzayk1BSyyLHiSuGSKcVsUZZS5EVheGZISYGCkrbiVZFXQlDGFR2ju8PdvXdfPYRO7-pgoYk_gOuDlkxFF1iQSN7-I7eu9218ThNMMRGE5yxS-EBZ70LwUOm9r3fG_0RID5519KwHz_roOUZuDpEaAP5wzhUTWU5_ASAaeFc</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Lee, Kwang Y</creator><creator>Van Sickel, Joel H</creator><creator>Hoffman, Jason A</creator><creator>Won-Hee Jung</creator><creator>Sung-Ho Kim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>201012</creationdate><title>Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant</title><author>Lee, Kwang Y ; Van Sickel, Joel H ; Hoffman, Jason A ; Won-Hee Jung ; Sung-Ho Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-463bb9d932c833ab8b7095990d4994cbdd867bba52a1d3e3e98cf5fb7f6634593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Boilers</topic><topic>Gain tuning</topic><topic>Intelligent control</topic><topic>modified predictive optimal control (MPOC)</topic><topic>Power generation</topic><topic>Tuning</topic><topic>Turbines</topic><topic>ultrasupercritical (USC) power plant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kwang Y</creatorcontrib><creatorcontrib>Van Sickel, Joel H</creatorcontrib><creatorcontrib>Hoffman, Jason A</creatorcontrib><creatorcontrib>Won-Hee Jung</creatorcontrib><creatorcontrib>Sung-Ho Kim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Kwang Y</au><au>Van Sickel, Joel H</au><au>Hoffman, Jason A</au><au>Won-Hee Jung</au><au>Sung-Ho Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2010-12</date><risdate>2010</risdate><volume>25</volume><issue>4</issue><spage>1063</spage><epage>1070</epage><pages>1063-1070</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>A large-scale once-through-type ultrasupercritical boiler power plant is investigated for the development of an analyzable model for use in developing an intelligent control system. Using data from the power plant, a model is realized using dynamically recurrent neural networks (NN). This requires the partitioning of multiple subsystems, which are each represented by an individual NN that when combined form the whole plant model. Modified predictive optimal control was used to drive the plant to desired states; however, due to the computational intensity of this approach, it could not be executed quickly enough to satisfy project requirements. As an alternative, a reference governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning, which, while more complicated, satisfied the computational speed required for the controller to be realized.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2010.2060488</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2010-12, Vol.25 (4), p.1063-1070
issn 0885-8969
1558-0059
language eng
recordid cdi_crossref_primary_10_1109_TEC_2010_2060488
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Boilers
Gain tuning
Intelligent control
modified predictive optimal control (MPOC)
Power generation
Tuning
Turbines
ultrasupercritical (USC) power plant
title Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controller%20Design%20for%20a%20Large-Scale%20Ultrasupercritical%20Once-Through%20Boiler%20Power%20Plant&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Lee,%20Kwang%20Y&rft.date=2010-12&rft.volume=25&rft.issue=4&rft.spage=1063&rft.epage=1070&rft.pages=1063-1070&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2010.2060488&rft_dat=%3Cproquest_RIE%3E849488061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030161574&rft_id=info:pmid/&rft_ieee_id=5594627&rfr_iscdi=true