Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks
This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2005-12, Vol.20 (4), p.771-780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 780 |
---|---|
container_issue | 4 |
container_start_page | 771 |
container_title | IEEE transactions on energy conversion |
container_volume | 20 |
creator | Karanayil, B. Rahman, M.F. Grantham, C. |
description | This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment. |
doi_str_mv | 10.1109/TEC.2005.853761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2005_853761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546069</ieee_id><sourcerecordid>896237360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4433be4831f66881dd18657f217ec8deac2a88b3700a0bee68370ffa5ee1e93d3</originalsourceid><addsrcrecordid>eNp9kb1PwzAQxS0EEqUwM7BYDDCl2HHsOCOqyodUiQGYLdc5I0MaFzspav963AYJiYHpne5-96S7h9A5JRNKSXXzMptOckL4RHJWCnqARpRzmaVOdYhGREqeyUpUx-gkxndCaMFzOkKr5053PmDd1jj4XRUgutjp1gD2iwhhDSFimwaurXvTOd_i5R6sg1sD7qNr37Dtt9sNbvybM3srHTpnnXG6wS30YS_dlw8f8RQdWd1EOPvRMXq9m71MH7L50_3j9HaemYKWXVYUjC2gkIxaIaSkdU2l4KXNaQlG1qBNrqVcsJIQTRYAQqbSWs0BKFSsZmN0Pfiugv_sIXZq6aKBptEt-D6q9IuclUyQRF79S-aS0rwoWQIv_4Dvvg9tukJJUZFKcCkSdDNAJvgYA1i1Cm6pw0ZRonZBqRSU2gWlhqDSxsWw4QDgl-aFIKJi34oSkJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869096586</pqid></control><display><type>article</type><title>Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Karanayil, B. ; Rahman, M.F. ; Grantham, C.</creator><creatorcontrib>Karanayil, B. ; Rahman, M.F. ; Grantham, C.</creatorcontrib><description>This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2005.853761</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Artificial neural networks (ANNs) ; Computer simulation ; Couplings ; Current measurement ; Electrical resistance measurement ; Flux ; Fuzzy logic ; Induction motor drives ; Neural networks ; Observers ; parameter identification ; Rotors ; Stators ; Studies ; Voltage</subject><ispartof>IEEE transactions on energy conversion, 2005-12, Vol.20 (4), p.771-780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4433be4831f66881dd18657f217ec8deac2a88b3700a0bee68370ffa5ee1e93d3</citedby><cites>FETCH-LOGICAL-c417t-4433be4831f66881dd18657f217ec8deac2a88b3700a0bee68370ffa5ee1e93d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1546069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karanayil, B.</creatorcontrib><creatorcontrib>Rahman, M.F.</creatorcontrib><creatorcontrib>Grantham, C.</creatorcontrib><title>Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment.</description><subject>Artificial neural networks</subject><subject>Artificial neural networks (ANNs)</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Current measurement</subject><subject>Electrical resistance measurement</subject><subject>Flux</subject><subject>Fuzzy logic</subject><subject>Induction motor drives</subject><subject>Neural networks</subject><subject>Observers</subject><subject>parameter identification</subject><subject>Rotors</subject><subject>Stators</subject><subject>Studies</subject><subject>Voltage</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1PwzAQxS0EEqUwM7BYDDCl2HHsOCOqyodUiQGYLdc5I0MaFzspav963AYJiYHpne5-96S7h9A5JRNKSXXzMptOckL4RHJWCnqARpRzmaVOdYhGREqeyUpUx-gkxndCaMFzOkKr5053PmDd1jj4XRUgutjp1gD2iwhhDSFimwaurXvTOd_i5R6sg1sD7qNr37Dtt9sNbvybM3srHTpnnXG6wS30YS_dlw8f8RQdWd1EOPvRMXq9m71MH7L50_3j9HaemYKWXVYUjC2gkIxaIaSkdU2l4KXNaQlG1qBNrqVcsJIQTRYAQqbSWs0BKFSsZmN0Pfiugv_sIXZq6aKBptEt-D6q9IuclUyQRF79S-aS0rwoWQIv_4Dvvg9tukJJUZFKcCkSdDNAJvgYA1i1Cm6pw0ZRonZBqRSU2gWlhqDSxsWw4QDgl-aFIKJi34oSkJo</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Karanayil, B.</creator><creator>Rahman, M.F.</creator><creator>Grantham, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20051201</creationdate><title>Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks</title><author>Karanayil, B. ; Rahman, M.F. ; Grantham, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4433be4831f66881dd18657f217ec8deac2a88b3700a0bee68370ffa5ee1e93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial neural networks</topic><topic>Artificial neural networks (ANNs)</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Current measurement</topic><topic>Electrical resistance measurement</topic><topic>Flux</topic><topic>Fuzzy logic</topic><topic>Induction motor drives</topic><topic>Neural networks</topic><topic>Observers</topic><topic>parameter identification</topic><topic>Rotors</topic><topic>Stators</topic><topic>Studies</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karanayil, B.</creatorcontrib><creatorcontrib>Rahman, M.F.</creatorcontrib><creatorcontrib>Grantham, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karanayil, B.</au><au>Rahman, M.F.</au><au>Grantham, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>20</volume><issue>4</issue><spage>771</spage><epage>780</epage><pages>771-780</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2005.853761</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2005-12, Vol.20 (4), p.771-780 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEC_2005_853761 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Artificial neural networks (ANNs) Computer simulation Couplings Current measurement Electrical resistance measurement Flux Fuzzy logic Induction motor drives Neural networks Observers parameter identification Rotors Stators Studies Voltage |
title | Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stator%20and%20rotor%20resistance%20observers%20for%20induction%20motor%20drive%20using%20fuzzy%20logic%20and%20artificial%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Karanayil,%20B.&rft.date=2005-12-01&rft.volume=20&rft.issue=4&rft.spage=771&rft.epage=780&rft.pages=771-780&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2005.853761&rft_dat=%3Cproquest_RIE%3E896237360%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869096586&rft_id=info:pmid/&rft_ieee_id=1546069&rfr_iscdi=true |