Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks

This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2005-12, Vol.20 (4), p.771-780
Hauptverfasser: Karanayil, B., Rahman, M.F., Grantham, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 780
container_issue 4
container_start_page 771
container_title IEEE transactions on energy conversion
container_volume 20
creator Karanayil, B.
Rahman, M.F.
Grantham, C.
description This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment.
doi_str_mv 10.1109/TEC.2005.853761
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2005_853761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546069</ieee_id><sourcerecordid>896237360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4433be4831f66881dd18657f217ec8deac2a88b3700a0bee68370ffa5ee1e93d3</originalsourceid><addsrcrecordid>eNp9kb1PwzAQxS0EEqUwM7BYDDCl2HHsOCOqyodUiQGYLdc5I0MaFzspav963AYJiYHpne5-96S7h9A5JRNKSXXzMptOckL4RHJWCnqARpRzmaVOdYhGREqeyUpUx-gkxndCaMFzOkKr5053PmDd1jj4XRUgutjp1gD2iwhhDSFimwaurXvTOd_i5R6sg1sD7qNr37Dtt9sNbvybM3srHTpnnXG6wS30YS_dlw8f8RQdWd1EOPvRMXq9m71MH7L50_3j9HaemYKWXVYUjC2gkIxaIaSkdU2l4KXNaQlG1qBNrqVcsJIQTRYAQqbSWs0BKFSsZmN0Pfiugv_sIXZq6aKBptEt-D6q9IuclUyQRF79S-aS0rwoWQIv_4Dvvg9tukJJUZFKcCkSdDNAJvgYA1i1Cm6pw0ZRonZBqRSU2gWlhqDSxsWw4QDgl-aFIKJi34oSkJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869096586</pqid></control><display><type>article</type><title>Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Karanayil, B. ; Rahman, M.F. ; Grantham, C.</creator><creatorcontrib>Karanayil, B. ; Rahman, M.F. ; Grantham, C.</creatorcontrib><description>This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2005.853761</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Artificial neural networks (ANNs) ; Computer simulation ; Couplings ; Current measurement ; Electrical resistance measurement ; Flux ; Fuzzy logic ; Induction motor drives ; Neural networks ; Observers ; parameter identification ; Rotors ; Stators ; Studies ; Voltage</subject><ispartof>IEEE transactions on energy conversion, 2005-12, Vol.20 (4), p.771-780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4433be4831f66881dd18657f217ec8deac2a88b3700a0bee68370ffa5ee1e93d3</citedby><cites>FETCH-LOGICAL-c417t-4433be4831f66881dd18657f217ec8deac2a88b3700a0bee68370ffa5ee1e93d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1546069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karanayil, B.</creatorcontrib><creatorcontrib>Rahman, M.F.</creatorcontrib><creatorcontrib>Grantham, C.</creatorcontrib><title>Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment.</description><subject>Artificial neural networks</subject><subject>Artificial neural networks (ANNs)</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Current measurement</subject><subject>Electrical resistance measurement</subject><subject>Flux</subject><subject>Fuzzy logic</subject><subject>Induction motor drives</subject><subject>Neural networks</subject><subject>Observers</subject><subject>parameter identification</subject><subject>Rotors</subject><subject>Stators</subject><subject>Studies</subject><subject>Voltage</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1PwzAQxS0EEqUwM7BYDDCl2HHsOCOqyodUiQGYLdc5I0MaFzspav963AYJiYHpne5-96S7h9A5JRNKSXXzMptOckL4RHJWCnqARpRzmaVOdYhGREqeyUpUx-gkxndCaMFzOkKr5053PmDd1jj4XRUgutjp1gD2iwhhDSFimwaurXvTOd_i5R6sg1sD7qNr37Dtt9sNbvybM3srHTpnnXG6wS30YS_dlw8f8RQdWd1EOPvRMXq9m71MH7L50_3j9HaemYKWXVYUjC2gkIxaIaSkdU2l4KXNaQlG1qBNrqVcsJIQTRYAQqbSWs0BKFSsZmN0Pfiugv_sIXZq6aKBptEt-D6q9IuclUyQRF79S-aS0rwoWQIv_4Dvvg9tukJJUZFKcCkSdDNAJvgYA1i1Cm6pw0ZRonZBqRSU2gWlhqDSxsWw4QDgl-aFIKJi34oSkJo</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Karanayil, B.</creator><creator>Rahman, M.F.</creator><creator>Grantham, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20051201</creationdate><title>Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks</title><author>Karanayil, B. ; Rahman, M.F. ; Grantham, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4433be4831f66881dd18657f217ec8deac2a88b3700a0bee68370ffa5ee1e93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial neural networks</topic><topic>Artificial neural networks (ANNs)</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Current measurement</topic><topic>Electrical resistance measurement</topic><topic>Flux</topic><topic>Fuzzy logic</topic><topic>Induction motor drives</topic><topic>Neural networks</topic><topic>Observers</topic><topic>parameter identification</topic><topic>Rotors</topic><topic>Stators</topic><topic>Studies</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karanayil, B.</creatorcontrib><creatorcontrib>Rahman, M.F.</creatorcontrib><creatorcontrib>Grantham, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karanayil, B.</au><au>Rahman, M.F.</au><au>Grantham, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>20</volume><issue>4</issue><spage>771</spage><epage>780</epage><pages>771-780</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2005.853761</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2005-12, Vol.20 (4), p.771-780
issn 0885-8969
1558-0059
language eng
recordid cdi_crossref_primary_10_1109_TEC_2005_853761
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Artificial neural networks (ANNs)
Computer simulation
Couplings
Current measurement
Electrical resistance measurement
Flux
Fuzzy logic
Induction motor drives
Neural networks
Observers
parameter identification
Rotors
Stators
Studies
Voltage
title Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stator%20and%20rotor%20resistance%20observers%20for%20induction%20motor%20drive%20using%20fuzzy%20logic%20and%20artificial%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Karanayil,%20B.&rft.date=2005-12-01&rft.volume=20&rft.issue=4&rft.spage=771&rft.epage=780&rft.pages=771-780&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2005.853761&rft_dat=%3Cproquest_RIE%3E896237360%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869096586&rft_id=info:pmid/&rft_ieee_id=1546069&rfr_iscdi=true