Batch Inference on Deep Convolutional Neural Networks With Fully Homomorphic Encryption Using Channel-By-Channel Convolutions

Secure Machine Learning as a Service (MLaaS) is a viable solution where clients seek secure ML computation delegation while protecting sensitive data. We propose an efficient method to securely evaluate deep standard convolutional neural networks based on residue number system variant of Cheon-Kim-K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2024-08, p.1-12
Hauptverfasser: Cheon, Jung Hee, Kang, Minsik, Kim, Taeseong, Jung, Junyoung, Yeo, Yongdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on dependable and secure computing
container_volume
creator Cheon, Jung Hee
Kang, Minsik
Kim, Taeseong
Jung, Junyoung
Yeo, Yongdong
description Secure Machine Learning as a Service (MLaaS) is a viable solution where clients seek secure ML computation delegation while protecting sensitive data. We propose an efficient method to securely evaluate deep standard convolutional neural networks based on residue number system variant of Cheon-Kim-Kim-Song (RNS-CKKS) scheme in the manner of batch inference. In particular, we introduce a packing method called Channel-By-Channel Packing that maximizes the slot compactness and Single-Instruction-Multiple-Data (SIMD) capabilities in ciphertexts. We also propose a new method for homomorphic convolution evaluation called Channel-By-Channel Convolution , which minimizes the additional heavy operations during convolution layers. Simulation results show that our work has improvements in amortized runtime for inference, with a factor of 5.04 and 5.20 for ResNet-20 and ResNet-110, respectively, compared to the previous results. We note that our results almost simulate the original backbone models, with classification accuracy differing from the backbone within 0.02%p. Furthermore, we show that the client's rotation key size generated and transmitted can be reduced from 105.6GB to 6.91GB for ResNet models during an MLaaS scenario. Finally, we show that our method can be combined with previous methods, providing flexibility for selecting batch sizes for inference.
doi_str_mv 10.1109/TDSC.2024.3448406
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TDSC_2024_3448406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10654756</ieee_id><sourcerecordid>10_1109_TDSC_2024_3448406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c636-736ee73de7802b4d405f8c7cf32a70695e6de21da0ab07b2ec515cf4f30a292a3</originalsourceid><addsrcrecordid>eNpNkL1OwzAcxC0EEqXwAEgMfoEUfzsZaUpppQoGihgj1_mHBFKnslNQBt6dhHaobrgb7m74IXRLyYRSktyvZ6_phBEmJlyIWBB1hkY0ETQihMbnfZZCRjLR9BJdhfBJ-maciBH6nZrWlnjpCvDgLODG4RnADqeN-27qfVs1ztT4Gfb-39qfxn8F_F61JZ7v67rDi2bby-_KyuJHZ323Gzb4LVTuA6elcQ7qaNpFx3h6HK7RRWHqADdHH6P1_HGdLqLVy9MyfVhFVnEVaa4ANM9Bx4RtRC6ILGKrbcGZ0UQlElQOjOaGmA3RGwZWUmkLUXBiWMIMHyN6uLW-CcFDke18tTW-yyjJBnzZgC8b8GVHfP3m7rCpAOCkr6TQUvE_SRZurg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Batch Inference on Deep Convolutional Neural Networks With Fully Homomorphic Encryption Using Channel-By-Channel Convolutions</title><source>IEEE Electronic Library (IEL)</source><creator>Cheon, Jung Hee ; Kang, Minsik ; Kim, Taeseong ; Jung, Junyoung ; Yeo, Yongdong</creator><creatorcontrib>Cheon, Jung Hee ; Kang, Minsik ; Kim, Taeseong ; Jung, Junyoung ; Yeo, Yongdong</creatorcontrib><description>Secure Machine Learning as a Service (MLaaS) is a viable solution where clients seek secure ML computation delegation while protecting sensitive data. We propose an efficient method to securely evaluate deep standard convolutional neural networks based on residue number system variant of Cheon-Kim-Kim-Song (RNS-CKKS) scheme in the manner of batch inference. In particular, we introduce a packing method called Channel-By-Channel Packing that maximizes the slot compactness and Single-Instruction-Multiple-Data (SIMD) capabilities in ciphertexts. We also propose a new method for homomorphic convolution evaluation called Channel-By-Channel Convolution , which minimizes the additional heavy operations during convolution layers. Simulation results show that our work has improvements in amortized runtime for inference, with a factor of 5.04 and 5.20 for ResNet-20 and ResNet-110, respectively, compared to the previous results. We note that our results almost simulate the original backbone models, with classification accuracy differing from the backbone within 0.02%p. Furthermore, we show that the client's rotation key size generated and transmitted can be reduced from 105.6GB to 6.91GB for ResNet models during an MLaaS scenario. Finally, we show that our method can be combined with previous methods, providing flexibility for selecting batch sizes for inference.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2024.3448406</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Convolutional neural network ; Convolutional neural networks ; Cryptography ; fully homomorphic encryption ; privacy-preserving machine learning ; ResNet ; Servers ; Single instruction multiple data ; Throughput ; Vectors</subject><ispartof>IEEE transactions on dependable and secure computing, 2024-08, p.1-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0006-3826-4636 ; 0009-0007-9947-0377 ; 0000-0002-7085-2220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10654756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10654756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheon, Jung Hee</creatorcontrib><creatorcontrib>Kang, Minsik</creatorcontrib><creatorcontrib>Kim, Taeseong</creatorcontrib><creatorcontrib>Jung, Junyoung</creatorcontrib><creatorcontrib>Yeo, Yongdong</creatorcontrib><title>Batch Inference on Deep Convolutional Neural Networks With Fully Homomorphic Encryption Using Channel-By-Channel Convolutions</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Secure Machine Learning as a Service (MLaaS) is a viable solution where clients seek secure ML computation delegation while protecting sensitive data. We propose an efficient method to securely evaluate deep standard convolutional neural networks based on residue number system variant of Cheon-Kim-Kim-Song (RNS-CKKS) scheme in the manner of batch inference. In particular, we introduce a packing method called Channel-By-Channel Packing that maximizes the slot compactness and Single-Instruction-Multiple-Data (SIMD) capabilities in ciphertexts. We also propose a new method for homomorphic convolution evaluation called Channel-By-Channel Convolution , which minimizes the additional heavy operations during convolution layers. Simulation results show that our work has improvements in amortized runtime for inference, with a factor of 5.04 and 5.20 for ResNet-20 and ResNet-110, respectively, compared to the previous results. We note that our results almost simulate the original backbone models, with classification accuracy differing from the backbone within 0.02%p. Furthermore, we show that the client's rotation key size generated and transmitted can be reduced from 105.6GB to 6.91GB for ResNet models during an MLaaS scenario. Finally, we show that our method can be combined with previous methods, providing flexibility for selecting batch sizes for inference.</description><subject>Accuracy</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Cryptography</subject><subject>fully homomorphic encryption</subject><subject>privacy-preserving machine learning</subject><subject>ResNet</subject><subject>Servers</subject><subject>Single instruction multiple data</subject><subject>Throughput</subject><subject>Vectors</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAcxC0EEqXwAEgMfoEUfzsZaUpppQoGihgj1_mHBFKnslNQBt6dhHaobrgb7m74IXRLyYRSktyvZ6_phBEmJlyIWBB1hkY0ETQihMbnfZZCRjLR9BJdhfBJ-maciBH6nZrWlnjpCvDgLODG4RnADqeN-27qfVs1ztT4Gfb-39qfxn8F_F61JZ7v67rDi2bby-_KyuJHZ323Gzb4LVTuA6elcQ7qaNpFx3h6HK7RRWHqADdHH6P1_HGdLqLVy9MyfVhFVnEVaa4ANM9Bx4RtRC6ILGKrbcGZ0UQlElQOjOaGmA3RGwZWUmkLUXBiWMIMHyN6uLW-CcFDke18tTW-yyjJBnzZgC8b8GVHfP3m7rCpAOCkr6TQUvE_SRZurg</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Cheon, Jung Hee</creator><creator>Kang, Minsik</creator><creator>Kim, Taeseong</creator><creator>Jung, Junyoung</creator><creator>Yeo, Yongdong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-3826-4636</orcidid><orcidid>https://orcid.org/0009-0007-9947-0377</orcidid><orcidid>https://orcid.org/0000-0002-7085-2220</orcidid></search><sort><creationdate>20240828</creationdate><title>Batch Inference on Deep Convolutional Neural Networks With Fully Homomorphic Encryption Using Channel-By-Channel Convolutions</title><author>Cheon, Jung Hee ; Kang, Minsik ; Kim, Taeseong ; Jung, Junyoung ; Yeo, Yongdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c636-736ee73de7802b4d405f8c7cf32a70695e6de21da0ab07b2ec515cf4f30a292a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Cryptography</topic><topic>fully homomorphic encryption</topic><topic>privacy-preserving machine learning</topic><topic>ResNet</topic><topic>Servers</topic><topic>Single instruction multiple data</topic><topic>Throughput</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Jung Hee</creatorcontrib><creatorcontrib>Kang, Minsik</creatorcontrib><creatorcontrib>Kim, Taeseong</creatorcontrib><creatorcontrib>Jung, Junyoung</creatorcontrib><creatorcontrib>Yeo, Yongdong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheon, Jung Hee</au><au>Kang, Minsik</au><au>Kim, Taeseong</au><au>Jung, Junyoung</au><au>Yeo, Yongdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Batch Inference on Deep Convolutional Neural Networks With Fully Homomorphic Encryption Using Channel-By-Channel Convolutions</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2024-08-28</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Secure Machine Learning as a Service (MLaaS) is a viable solution where clients seek secure ML computation delegation while protecting sensitive data. We propose an efficient method to securely evaluate deep standard convolutional neural networks based on residue number system variant of Cheon-Kim-Kim-Song (RNS-CKKS) scheme in the manner of batch inference. In particular, we introduce a packing method called Channel-By-Channel Packing that maximizes the slot compactness and Single-Instruction-Multiple-Data (SIMD) capabilities in ciphertexts. We also propose a new method for homomorphic convolution evaluation called Channel-By-Channel Convolution , which minimizes the additional heavy operations during convolution layers. Simulation results show that our work has improvements in amortized runtime for inference, with a factor of 5.04 and 5.20 for ResNet-20 and ResNet-110, respectively, compared to the previous results. We note that our results almost simulate the original backbone models, with classification accuracy differing from the backbone within 0.02%p. Furthermore, we show that the client's rotation key size generated and transmitted can be reduced from 105.6GB to 6.91GB for ResNet models during an MLaaS scenario. Finally, we show that our method can be combined with previous methods, providing flexibility for selecting batch sizes for inference.</abstract><pub>IEEE</pub><doi>10.1109/TDSC.2024.3448406</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0006-3826-4636</orcidid><orcidid>https://orcid.org/0009-0007-9947-0377</orcidid><orcidid>https://orcid.org/0000-0002-7085-2220</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2024-08, p.1-12
issn 1545-5971
1941-0018
language eng
recordid cdi_crossref_primary_10_1109_TDSC_2024_3448406
source IEEE Electronic Library (IEL)
subjects Accuracy
Convolutional neural network
Convolutional neural networks
Cryptography
fully homomorphic encryption
privacy-preserving machine learning
ResNet
Servers
Single instruction multiple data
Throughput
Vectors
title Batch Inference on Deep Convolutional Neural Networks With Fully Homomorphic Encryption Using Channel-By-Channel Convolutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Batch%20Inference%20on%20Deep%20Convolutional%20Neural%20Networks%20With%20Fully%20Homomorphic%20Encryption%20Using%20Channel-By-Channel%20Convolutions&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Cheon,%20Jung%20Hee&rft.date=2024-08-28&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2024.3448406&rft_dat=%3Ccrossref_RIE%3E10_1109_TDSC_2024_3448406%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10654756&rfr_iscdi=true