Energy-Efficient Superconductor Bloom Filters for Streaming Data Inspection

Bloom filters can be used in network intrusion detection systems to detect known attack signatures in packet payloads. In this paper we propose and analyze the potential application of superconductor flux quantum technology for streaming data inspection with Bloom filters designed with Reciprocal Qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2020-09, Vol.17 (5), p.1015-1025
1. Verfasser: Dorojevets, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1025
container_issue 5
container_start_page 1015
container_title IEEE transactions on dependable and secure computing
container_volume 17
creator Dorojevets, Mikhail
description Bloom filters can be used in network intrusion detection systems to detect known attack signatures in packet payloads. In this paper we propose and analyze the potential application of superconductor flux quantum technology for streaming data inspection with Bloom filters designed with Reciprocal Quantum Logic (RQL). This paper describes the gate-level design, performance, and energy-efficiency analysis of three superconductor 2 Kbit Bloom filters with 1) the run-time selection of the number of hashes per stream, and 2) different numbers of input streams per Bloom filter. The Bloom filter circuits were designed using a bottom-up approach with manual placing and routing of basic RQL gates. The design complexity is below 97K Josephson junctions. The highest clock frequency reached in the simulation of the circuits is 14.7 GHz. The false positive ra tes of the RQL Bloom filters are in very close agreement with the theoretical expectations of the false positive probability for the filters. For the cryocooling efficiency of 0.1 percent, the RQL Bloom filters demonstrate high energy efficiency in the range of ∼1.5-43.6 pJ/stream/operation at room temperature for stream lengths from 16 to 256 bits. All circuits are designed and simulated for the 248 nm MIT Lincoln Laboratory SFQ5ee fabrication process.
doi_str_mv 10.1109/TDSC.2018.2843318
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TDSC_2018_2843318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8371212</ieee_id><sourcerecordid>2436608211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f86bff64d136d1b6ccb7ac345aad6f0fbc8e45b19a11eb40aba0ea9aadea31ea3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwAxCXSpw74iTt0iOMDSYmcdg4R2nqTJ22piTpYf-eTJs4WLae37Olj5BHoBMAWr1s3tezCaMgJ0wKzkFekRFUAnKatOs0F6LIi2oKt-QuhB2lTMhKjMjXvEO_PeZza1vTYhez9dCjN65rBhOdz972zh2yRbuP6ENmk7KOHvWh7bbZu446W3ahRxNb192TG6v3AR8ufUx-FvPN7DNffX8sZ6-r3LCKx9zKsra2FA3wsoG6NKaeasNFoXVTWmprI1EUNVQaAGtBda0p6iptUXNINSbP57u9d78Dhqh2bvBdeqmY4GVJJQNILji7jHcheLSq9-1B-6MCqk7M1ImZOjFTF2Yp83TOtIj475d8CgwY_wMnA2nS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436608211</pqid></control><display><type>article</type><title>Energy-Efficient Superconductor Bloom Filters for Streaming Data Inspection</title><source>IEEE Electronic Library (IEL)</source><creator>Dorojevets, Mikhail</creator><creatorcontrib>Dorojevets, Mikhail</creatorcontrib><description>Bloom filters can be used in network intrusion detection systems to detect known attack signatures in packet payloads. In this paper we propose and analyze the potential application of superconductor flux quantum technology for streaming data inspection with Bloom filters designed with Reciprocal Quantum Logic (RQL). This paper describes the gate-level design, performance, and energy-efficiency analysis of three superconductor 2 Kbit Bloom filters with 1) the run-time selection of the number of hashes per stream, and 2) different numbers of input streams per Bloom filter. The Bloom filter circuits were designed using a bottom-up approach with manual placing and routing of basic RQL gates. The design complexity is below 97K Josephson junctions. The highest clock frequency reached in the simulation of the circuits is 14.7 GHz. The false positive ra tes of the RQL Bloom filters are in very close agreement with the theoretical expectations of the false positive probability for the filters. For the cryocooling efficiency of 0.1 percent, the RQL Bloom filters demonstrate high energy efficiency in the range of ∼1.5-43.6 pJ/stream/operation at room temperature for stream lengths from 16 to 256 bits. All circuits are designed and simulated for the 248 nm MIT Lincoln Laboratory SFQ5ee fabrication process.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2018.2843318</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Bloom filters ; Circuit design ; Clocks ; Design ; Energy efficiency ; Information filters ; Inspection ; Josephson junctions ; Logic gates ; network security ; Payloads ; Room temperature ; Superconducting filters ; Superconducting integrated circuits</subject><ispartof>IEEE transactions on dependable and secure computing, 2020-09, Vol.17 (5), p.1015-1025</ispartof><rights>Copyright IEEE Computer Society 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f86bff64d136d1b6ccb7ac345aad6f0fbc8e45b19a11eb40aba0ea9aadea31ea3</citedby><cites>FETCH-LOGICAL-c293t-f86bff64d136d1b6ccb7ac345aad6f0fbc8e45b19a11eb40aba0ea9aadea31ea3</cites><orcidid>0000-0002-8216-5612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8371212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8371212$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dorojevets, Mikhail</creatorcontrib><title>Energy-Efficient Superconductor Bloom Filters for Streaming Data Inspection</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Bloom filters can be used in network intrusion detection systems to detect known attack signatures in packet payloads. In this paper we propose and analyze the potential application of superconductor flux quantum technology for streaming data inspection with Bloom filters designed with Reciprocal Quantum Logic (RQL). This paper describes the gate-level design, performance, and energy-efficiency analysis of three superconductor 2 Kbit Bloom filters with 1) the run-time selection of the number of hashes per stream, and 2) different numbers of input streams per Bloom filter. The Bloom filter circuits were designed using a bottom-up approach with manual placing and routing of basic RQL gates. The design complexity is below 97K Josephson junctions. The highest clock frequency reached in the simulation of the circuits is 14.7 GHz. The false positive ra tes of the RQL Bloom filters are in very close agreement with the theoretical expectations of the false positive probability for the filters. For the cryocooling efficiency of 0.1 percent, the RQL Bloom filters demonstrate high energy efficiency in the range of ∼1.5-43.6 pJ/stream/operation at room temperature for stream lengths from 16 to 256 bits. All circuits are designed and simulated for the 248 nm MIT Lincoln Laboratory SFQ5ee fabrication process.</description><subject>Bloom filters</subject><subject>Circuit design</subject><subject>Clocks</subject><subject>Design</subject><subject>Energy efficiency</subject><subject>Information filters</subject><subject>Inspection</subject><subject>Josephson junctions</subject><subject>Logic gates</subject><subject>network security</subject><subject>Payloads</subject><subject>Room temperature</subject><subject>Superconducting filters</subject><subject>Superconducting integrated circuits</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEmPwAxCXSpw74iTt0iOMDSYmcdg4R2nqTJ22piTpYf-eTJs4WLae37Olj5BHoBMAWr1s3tezCaMgJ0wKzkFekRFUAnKatOs0F6LIi2oKt-QuhB2lTMhKjMjXvEO_PeZza1vTYhez9dCjN65rBhOdz972zh2yRbuP6ENmk7KOHvWh7bbZu446W3ahRxNb192TG6v3AR8ufUx-FvPN7DNffX8sZ6-r3LCKx9zKsra2FA3wsoG6NKaeasNFoXVTWmprI1EUNVQaAGtBda0p6iptUXNINSbP57u9d78Dhqh2bvBdeqmY4GVJJQNILji7jHcheLSq9-1B-6MCqk7M1ImZOjFTF2Yp83TOtIj475d8CgwY_wMnA2nS</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Dorojevets, Mikhail</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-8216-5612</orcidid></search><sort><creationdate>20200901</creationdate><title>Energy-Efficient Superconductor Bloom Filters for Streaming Data Inspection</title><author>Dorojevets, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f86bff64d136d1b6ccb7ac345aad6f0fbc8e45b19a11eb40aba0ea9aadea31ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bloom filters</topic><topic>Circuit design</topic><topic>Clocks</topic><topic>Design</topic><topic>Energy efficiency</topic><topic>Information filters</topic><topic>Inspection</topic><topic>Josephson junctions</topic><topic>Logic gates</topic><topic>network security</topic><topic>Payloads</topic><topic>Room temperature</topic><topic>Superconducting filters</topic><topic>Superconducting integrated circuits</topic><toplevel>online_resources</toplevel><creatorcontrib>Dorojevets, Mikhail</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dorojevets, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Superconductor Bloom Filters for Streaming Data Inspection</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>17</volume><issue>5</issue><spage>1015</spage><epage>1025</epage><pages>1015-1025</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Bloom filters can be used in network intrusion detection systems to detect known attack signatures in packet payloads. In this paper we propose and analyze the potential application of superconductor flux quantum technology for streaming data inspection with Bloom filters designed with Reciprocal Quantum Logic (RQL). This paper describes the gate-level design, performance, and energy-efficiency analysis of three superconductor 2 Kbit Bloom filters with 1) the run-time selection of the number of hashes per stream, and 2) different numbers of input streams per Bloom filter. The Bloom filter circuits were designed using a bottom-up approach with manual placing and routing of basic RQL gates. The design complexity is below 97K Josephson junctions. The highest clock frequency reached in the simulation of the circuits is 14.7 GHz. The false positive ra tes of the RQL Bloom filters are in very close agreement with the theoretical expectations of the false positive probability for the filters. For the cryocooling efficiency of 0.1 percent, the RQL Bloom filters demonstrate high energy efficiency in the range of ∼1.5-43.6 pJ/stream/operation at room temperature for stream lengths from 16 to 256 bits. All circuits are designed and simulated for the 248 nm MIT Lincoln Laboratory SFQ5ee fabrication process.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2018.2843318</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8216-5612</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2020-09, Vol.17 (5), p.1015-1025
issn 1545-5971
1941-0018
language eng
recordid cdi_crossref_primary_10_1109_TDSC_2018_2843318
source IEEE Electronic Library (IEL)
subjects Bloom filters
Circuit design
Clocks
Design
Energy efficiency
Information filters
Inspection
Josephson junctions
Logic gates
network security
Payloads
Room temperature
Superconducting filters
Superconducting integrated circuits
title Energy-Efficient Superconductor Bloom Filters for Streaming Data Inspection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Superconductor%20Bloom%20Filters%20for%20Streaming%20Data%20Inspection&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Dorojevets,%20Mikhail&rft.date=2020-09-01&rft.volume=17&rft.issue=5&rft.spage=1015&rft.epage=1025&rft.pages=1015-1025&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2018.2843318&rft_dat=%3Cproquest_RIE%3E2436608211%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436608211&rft_id=info:pmid/&rft_ieee_id=8371212&rfr_iscdi=true