Quantitative Analysis of Consensus Algorithms

Consensus is one of the key problems in fault-tolerant distributed computing. Although the solvability of consensus is now a well-understood problem, comparing different algorithms in terms of efficiency is still an open problem. In this paper, we address this question for round-based consensus algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2012-03, Vol.9 (2), p.236-249
Hauptverfasser: Borran, Fatemeh, Hutle, M., Santos, N., Schiper, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consensus is one of the key problems in fault-tolerant distributed computing. Although the solvability of consensus is now a well-understood problem, comparing different algorithms in terms of efficiency is still an open problem. In this paper, we address this question for round-based consensus algorithms using communication predicates, on top of a partial synchronous system that alternates between good and bad periods (synchronous and nonsynchronous periods). Communication predicates together with the detailed timing information of the underlying partially synchronous system provide a convenient and powerful framework for comparing different consensus algorithms and their implementations. This approach allows us to quantify the required length of a good period to solve a given number of consensus instances. With our results, we can observe several interesting issues, such as the number of rounds of an algorithm is not necessarily a good metric for its performance.
ISSN:1545-5971
1941-0018
DOI:10.1109/TDSC.2011.48