Efficient Fault Detection and Diagnosis in Complex Software Systems with Information-Theoretic Monitoring
Management metrics of complex software systems exhibit stable correlations which can enable fault detection and diagnosis. Current approaches use specific analytic forms, typically linear, for modeling correlations. In practice, more complex nonlinear relationships exist between metrics. Moreover, m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on dependable and secure computing 2011-07, Vol.8 (4), p.510-522 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 4 |
container_start_page | 510 |
container_title | IEEE transactions on dependable and secure computing |
container_volume | 8 |
creator | Miao Jiang Munawar, Mohammad A Reidemeister, Thomas Ward, Paul A S |
description | Management metrics of complex software systems exhibit stable correlations which can enable fault detection and diagnosis. Current approaches use specific analytic forms, typically linear, for modeling correlations. In practice, more complex nonlinear relationships exist between metrics. Moreover, most intermetric correlations form clusters rather than simple pairwise correlations. These clusters provide additional information and offer the possibility for optimization. In this paper, we address these issues by using Normalized Mutual Information (NMI) as a similarity measure to identify clusters of correlated metrics, without assuming any specific form for the metric relationships. We show how to apply the Wilcoxon Rank-Sum test on the entropy measures to detect errors in the system. We also present three diagnosis algorithms to locate faulty components: RatioScore, based on the Jaccard coefficient, SigScore, which incorporates knowledge of component dependencies, and BayesianScore, which uses Bayesian inference to assign a fault probability to each component. We evaluate our approach in the context of a complex enterprise application, and show that 1) stable, nonlinear correlations exist and can be captured with our approach; 2) we can detect a large fraction of faults with a low false positive rate (we detect up to 18 of the 22 faults we injected); and 3) we improve the diagnosis with our new diagnosis algorithms. |
doi_str_mv | 10.1109/TDSC.2011.16 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TDSC_2011_16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5714701</ieee_id><sourcerecordid>1671278104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-a2ffdfb01daf79502d5261063f58ad919e1473f0c45d39a96d7464d731ff12c23</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBuAIgQQUNjYWi4mBFF_8kXhE_QAkEEPLHJnkDEaJXWxXpf-eVEUMTHfDc69Ob5ZdAB0DUHW7nC4m44ICjEEeZCegOOSUQnU47IKLXKgSjrPTGD8pLXil-ElmZ8bYxqJLZK7XXSJTTNgk6x3RriVTq9-djzYS68jE96sOv8nCm7TRAcliGxP2kWxs-iCPzvjQ691pvvxAHzDZhjx7Z5MP1r2fZUdGdxHPf-coe53PlpOH_Onl_nFy95Q3DETKdWFMa94otNqUStCiFYUEKpkRlW4VKAReMkMbLlqmtJJtySVvSwbGQNEUbJRd73NXwX-tMaa6t7HBrtMO_TrWIEsoygooH-jVP_rp18EN39WVlEwxKWFAN3vUBB9jQFOvgu112NZA613t9a72elf7kD3wyz23iPhHRTl8TYH9AHP4fmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866393661</pqid></control><display><type>article</type><title>Efficient Fault Detection and Diagnosis in Complex Software Systems with Information-Theoretic Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Miao Jiang ; Munawar, Mohammad A ; Reidemeister, Thomas ; Ward, Paul A S</creator><creatorcontrib>Miao Jiang ; Munawar, Mohammad A ; Reidemeister, Thomas ; Ward, Paul A S</creatorcontrib><description>Management metrics of complex software systems exhibit stable correlations which can enable fault detection and diagnosis. Current approaches use specific analytic forms, typically linear, for modeling correlations. In practice, more complex nonlinear relationships exist between metrics. Moreover, most intermetric correlations form clusters rather than simple pairwise correlations. These clusters provide additional information and offer the possibility for optimization. In this paper, we address these issues by using Normalized Mutual Information (NMI) as a similarity measure to identify clusters of correlated metrics, without assuming any specific form for the metric relationships. We show how to apply the Wilcoxon Rank-Sum test on the entropy measures to detect errors in the system. We also present three diagnosis algorithms to locate faulty components: RatioScore, based on the Jaccard coefficient, SigScore, which incorporates knowledge of component dependencies, and BayesianScore, which uses Bayesian inference to assign a fault probability to each component. We evaluate our approach in the context of a complex enterprise application, and show that 1) stable, nonlinear correlations exist and can be captured with our approach; 2) we can detect a large fraction of faults with a low false positive rate (we detect up to 18 of the 22 faults we injected); and 3) we improve the diagnosis with our new diagnosis algorithms.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2011.16</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Algorithms ; Analysis ; Automation ; autonomic systems ; Clusters ; Computational modeling ; Computer programs ; Correlation ; Diagnosis ; Digital Object Identifier ; Entropy ; Error correction & detection ; fault detection ; Fault diagnosis ; Faults ; Information theory ; Mann-Whitney U test ; Measurement ; Monitoring ; mutual information ; Network management systems ; Nonlinearity ; Parameter estimation ; Random variables ; Regression analysis ; Self-managing systems ; Software ; Studies ; Uncertainty</subject><ispartof>IEEE transactions on dependable and secure computing, 2011-07, Vol.8 (4), p.510-522</ispartof><rights>Copyright IEEE Computer Society Jul-Sep 2011</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-a2ffdfb01daf79502d5261063f58ad919e1473f0c45d39a96d7464d731ff12c23</citedby><cites>FETCH-LOGICAL-c315t-a2ffdfb01daf79502d5261063f58ad919e1473f0c45d39a96d7464d731ff12c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5714701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5714701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Miao Jiang</creatorcontrib><creatorcontrib>Munawar, Mohammad A</creatorcontrib><creatorcontrib>Reidemeister, Thomas</creatorcontrib><creatorcontrib>Ward, Paul A S</creatorcontrib><title>Efficient Fault Detection and Diagnosis in Complex Software Systems with Information-Theoretic Monitoring</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Management metrics of complex software systems exhibit stable correlations which can enable fault detection and diagnosis. Current approaches use specific analytic forms, typically linear, for modeling correlations. In practice, more complex nonlinear relationships exist between metrics. Moreover, most intermetric correlations form clusters rather than simple pairwise correlations. These clusters provide additional information and offer the possibility for optimization. In this paper, we address these issues by using Normalized Mutual Information (NMI) as a similarity measure to identify clusters of correlated metrics, without assuming any specific form for the metric relationships. We show how to apply the Wilcoxon Rank-Sum test on the entropy measures to detect errors in the system. We also present three diagnosis algorithms to locate faulty components: RatioScore, based on the Jaccard coefficient, SigScore, which incorporates knowledge of component dependencies, and BayesianScore, which uses Bayesian inference to assign a fault probability to each component. We evaluate our approach in the context of a complex enterprise application, and show that 1) stable, nonlinear correlations exist and can be captured with our approach; 2) we can detect a large fraction of faults with a low false positive rate (we detect up to 18 of the 22 faults we injected); and 3) we improve the diagnosis with our new diagnosis algorithms.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Automation</subject><subject>autonomic systems</subject><subject>Clusters</subject><subject>Computational modeling</subject><subject>Computer programs</subject><subject>Correlation</subject><subject>Diagnosis</subject><subject>Digital Object Identifier</subject><subject>Entropy</subject><subject>Error correction & detection</subject><subject>fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Information theory</subject><subject>Mann-Whitney U test</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>mutual information</subject><subject>Network management systems</subject><subject>Nonlinearity</subject><subject>Parameter estimation</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Self-managing systems</subject><subject>Software</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0D1PwzAQBuAIgQQUNjYWi4mBFF_8kXhE_QAkEEPLHJnkDEaJXWxXpf-eVEUMTHfDc69Ob5ZdAB0DUHW7nC4m44ICjEEeZCegOOSUQnU47IKLXKgSjrPTGD8pLXil-ElmZ8bYxqJLZK7XXSJTTNgk6x3RriVTq9-djzYS68jE96sOv8nCm7TRAcliGxP2kWxs-iCPzvjQ691pvvxAHzDZhjx7Z5MP1r2fZUdGdxHPf-coe53PlpOH_Onl_nFy95Q3DETKdWFMa94otNqUStCiFYUEKpkRlW4VKAReMkMbLlqmtJJtySVvSwbGQNEUbJRd73NXwX-tMaa6t7HBrtMO_TrWIEsoygooH-jVP_rp18EN39WVlEwxKWFAN3vUBB9jQFOvgu112NZA613t9a72elf7kD3wyz23iPhHRTl8TYH9AHP4fmQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Miao Jiang</creator><creator>Munawar, Mohammad A</creator><creator>Reidemeister, Thomas</creator><creator>Ward, Paul A S</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Efficient Fault Detection and Diagnosis in Complex Software Systems with Information-Theoretic Monitoring</title><author>Miao Jiang ; Munawar, Mohammad A ; Reidemeister, Thomas ; Ward, Paul A S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-a2ffdfb01daf79502d5261063f58ad919e1473f0c45d39a96d7464d731ff12c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Automation</topic><topic>autonomic systems</topic><topic>Clusters</topic><topic>Computational modeling</topic><topic>Computer programs</topic><topic>Correlation</topic><topic>Diagnosis</topic><topic>Digital Object Identifier</topic><topic>Entropy</topic><topic>Error correction & detection</topic><topic>fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Information theory</topic><topic>Mann-Whitney U test</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>mutual information</topic><topic>Network management systems</topic><topic>Nonlinearity</topic><topic>Parameter estimation</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Self-managing systems</topic><topic>Software</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Miao Jiang</creatorcontrib><creatorcontrib>Munawar, Mohammad A</creatorcontrib><creatorcontrib>Reidemeister, Thomas</creatorcontrib><creatorcontrib>Ward, Paul A S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miao Jiang</au><au>Munawar, Mohammad A</au><au>Reidemeister, Thomas</au><au>Ward, Paul A S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Fault Detection and Diagnosis in Complex Software Systems with Information-Theoretic Monitoring</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>8</volume><issue>4</issue><spage>510</spage><epage>522</epage><pages>510-522</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Management metrics of complex software systems exhibit stable correlations which can enable fault detection and diagnosis. Current approaches use specific analytic forms, typically linear, for modeling correlations. In practice, more complex nonlinear relationships exist between metrics. Moreover, most intermetric correlations form clusters rather than simple pairwise correlations. These clusters provide additional information and offer the possibility for optimization. In this paper, we address these issues by using Normalized Mutual Information (NMI) as a similarity measure to identify clusters of correlated metrics, without assuming any specific form for the metric relationships. We show how to apply the Wilcoxon Rank-Sum test on the entropy measures to detect errors in the system. We also present three diagnosis algorithms to locate faulty components: RatioScore, based on the Jaccard coefficient, SigScore, which incorporates knowledge of component dependencies, and BayesianScore, which uses Bayesian inference to assign a fault probability to each component. We evaluate our approach in the context of a complex enterprise application, and show that 1) stable, nonlinear correlations exist and can be captured with our approach; 2) we can detect a large fraction of faults with a low false positive rate (we detect up to 18 of the 22 faults we injected); and 3) we improve the diagnosis with our new diagnosis algorithms.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2011.16</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5971 |
ispartof | IEEE transactions on dependable and secure computing, 2011-07, Vol.8 (4), p.510-522 |
issn | 1545-5971 1941-0018 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TDSC_2011_16 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analysis Automation autonomic systems Clusters Computational modeling Computer programs Correlation Diagnosis Digital Object Identifier Entropy Error correction & detection fault detection Fault diagnosis Faults Information theory Mann-Whitney U test Measurement Monitoring mutual information Network management systems Nonlinearity Parameter estimation Random variables Regression analysis Self-managing systems Software Studies Uncertainty |
title | Efficient Fault Detection and Diagnosis in Complex Software Systems with Information-Theoretic Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Fault%20Detection%20and%20Diagnosis%20in%20Complex%20Software%20Systems%20with%20Information-Theoretic%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Miao%20Jiang&rft.date=2011-07-01&rft.volume=8&rft.issue=4&rft.spage=510&rft.epage=522&rft.pages=510-522&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2011.16&rft_dat=%3Cproquest_RIE%3E1671278104%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866393661&rft_id=info:pmid/&rft_ieee_id=5714701&rfr_iscdi=true |