Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices
This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-ga...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on device and materials reliability 2006-09, Vol.6 (3), p.377-385 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | 3 |
container_start_page | 377 |
container_title | IEEE transactions on device and materials reliability |
container_volume | 6 |
creator | Schwantes, S. Furthaler, J. Schauwecker, B. Dietz, F. Graf, M. Dudek, V. |
description | This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-gate electrode of the SOI material will add an additional dimension to the SOA, thereby causing further reliability constraints on the circuit design. For small and negative back-gate bias, the SOA is limited by the on-state breakdown whereas the off-state breakdown sets the limit for positive back-gate bias. For the first time, an analytical model of the breakdown voltage covering the reasonable back-gate voltage range is presented providing a first step toward a closed form circuit simulation of this effect. It is shown that the back-gate potential impacts on the breakdown behavior by modulating the carrier distribution in the drift region, the base transport factor of the parasitic bipolar transistor, and the drift region resistance. Moreover, it is shown that avalanche multiplication is the limiting breakdown mechanism for lateral SOI power devices |
doi_str_mv | 10.1109/TDMR.2006.883128 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TDMR_2006_883128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1717486</ieee_id><sourcerecordid>896203592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1672-4c9b79dc2fdd0d2e3a96dcecfab6f3c625a15547d71c731024738669058b0df93</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhYMoWKt7wU1w4yp1Hsk8ln1ZC5WCra6EYTq5o2nTTM2klv57EyMIru7lcM6B8wXBNUY9jJG8X46ennsEIdYTgmIiToIOThIRkYTHp81PURRTIc6DC-_XCGHJE9YJ3vqFzo8-86GzYfUB4UCbTTTRFYRja8FUoSt-dFdEi6qRByXoTeoORfjq8kq_Q5NcbHVZ7dwBynAxn4Yj-MoM-MvgzOrcw9Xv7QYvD-Pl8DGazSfTYX8WGcw4iWIjV1ymhtg0RSkBqiVLDRirV8xSw0ii6ykxTzk2nGJEYk4FYxIlYoVSK2k3uGt7d6X73IOv1DbzBvJcF-D2XgnJCKKJJLXz9p9z7fZljcAriQkmiYibOtSaTOm8L8GqXZnVA48KI9XAVg1s1cBWLew6ctNGMgD4s3PMY8HoN9FceV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>912125849</pqid></control><display><type>magazinearticle</type><title>Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Schwantes, S. ; Furthaler, J. ; Schauwecker, B. ; Dietz, F. ; Graf, M. ; Dudek, V.</creator><creatorcontrib>Schwantes, S. ; Furthaler, J. ; Schauwecker, B. ; Dietz, F. ; Graf, M. ; Dudek, V.</creatorcontrib><description>This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-gate electrode of the SOI material will add an additional dimension to the SOA, thereby causing further reliability constraints on the circuit design. For small and negative back-gate bias, the SOA is limited by the on-state breakdown whereas the off-state breakdown sets the limit for positive back-gate bias. For the first time, an analytical model of the breakdown voltage covering the reasonable back-gate voltage range is presented providing a first step toward a closed form circuit simulation of this effect. It is shown that the back-gate potential impacts on the breakdown behavior by modulating the carrier distribution in the drift region, the base transport factor of the parasitic bipolar transistor, and the drift region resistance. Moreover, it is shown that avalanche multiplication is the limiting breakdown mechanism for lateral SOI power devices</description><identifier>ISSN: 1530-4388</identifier><identifier>EISSN: 1558-2574</identifier><identifier>DOI: 10.1109/TDMR.2006.883128</identifier><identifier>CODEN: ITDMA2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Bias ; Breakdown ; Breakdown voltage ; Circuit design ; Circuit simulation ; Circuit synthesis ; Device breakdown ; Devices ; Drift ; Electric breakdown ; Electric potential ; Electrodes ; high-voltage ; Materials reliability ; Mathematical analysis ; MOSFETs ; on-state breakdown ; RESURF ; Semiconductor optical amplifiers ; Service oriented architecture ; Silicon on insulator technology ; silicon-on-insulator (SOI) ; smartpower ; Voltage</subject><ispartof>IEEE transactions on device and materials reliability, 2006-09, Vol.6 (3), p.377-385</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1672-4c9b79dc2fdd0d2e3a96dcecfab6f3c625a15547d71c731024738669058b0df93</citedby><cites>FETCH-LOGICAL-c1672-4c9b79dc2fdd0d2e3a96dcecfab6f3c625a15547d71c731024738669058b0df93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1717486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1717486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schwantes, S.</creatorcontrib><creatorcontrib>Furthaler, J.</creatorcontrib><creatorcontrib>Schauwecker, B.</creatorcontrib><creatorcontrib>Dietz, F.</creatorcontrib><creatorcontrib>Graf, M.</creatorcontrib><creatorcontrib>Dudek, V.</creatorcontrib><title>Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices</title><title>IEEE transactions on device and materials reliability</title><addtitle>TDMR</addtitle><description>This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-gate electrode of the SOI material will add an additional dimension to the SOA, thereby causing further reliability constraints on the circuit design. For small and negative back-gate bias, the SOA is limited by the on-state breakdown whereas the off-state breakdown sets the limit for positive back-gate bias. For the first time, an analytical model of the breakdown voltage covering the reasonable back-gate voltage range is presented providing a first step toward a closed form circuit simulation of this effect. It is shown that the back-gate potential impacts on the breakdown behavior by modulating the carrier distribution in the drift region, the base transport factor of the parasitic bipolar transistor, and the drift region resistance. Moreover, it is shown that avalanche multiplication is the limiting breakdown mechanism for lateral SOI power devices</description><subject>Analytical models</subject><subject>Bias</subject><subject>Breakdown</subject><subject>Breakdown voltage</subject><subject>Circuit design</subject><subject>Circuit simulation</subject><subject>Circuit synthesis</subject><subject>Device breakdown</subject><subject>Devices</subject><subject>Drift</subject><subject>Electric breakdown</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>high-voltage</subject><subject>Materials reliability</subject><subject>Mathematical analysis</subject><subject>MOSFETs</subject><subject>on-state breakdown</subject><subject>RESURF</subject><subject>Semiconductor optical amplifiers</subject><subject>Service oriented architecture</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator (SOI)</subject><subject>smartpower</subject><subject>Voltage</subject><issn>1530-4388</issn><issn>1558-2574</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2006</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhYMoWKt7wU1w4yp1Hsk8ln1ZC5WCra6EYTq5o2nTTM2klv57EyMIru7lcM6B8wXBNUY9jJG8X46ennsEIdYTgmIiToIOThIRkYTHp81PURRTIc6DC-_XCGHJE9YJ3vqFzo8-86GzYfUB4UCbTTTRFYRja8FUoSt-dFdEi6qRByXoTeoORfjq8kq_Q5NcbHVZ7dwBynAxn4Yj-MoM-MvgzOrcw9Xv7QYvD-Pl8DGazSfTYX8WGcw4iWIjV1ymhtg0RSkBqiVLDRirV8xSw0ii6ykxTzk2nGJEYk4FYxIlYoVSK2k3uGt7d6X73IOv1DbzBvJcF-D2XgnJCKKJJLXz9p9z7fZljcAriQkmiYibOtSaTOm8L8GqXZnVA48KI9XAVg1s1cBWLew6ctNGMgD4s3PMY8HoN9FceV4</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Schwantes, S.</creator><creator>Furthaler, J.</creator><creator>Schauwecker, B.</creator><creator>Dietz, F.</creator><creator>Graf, M.</creator><creator>Dudek, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices</title><author>Schwantes, S. ; Furthaler, J. ; Schauwecker, B. ; Dietz, F. ; Graf, M. ; Dudek, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1672-4c9b79dc2fdd0d2e3a96dcecfab6f3c625a15547d71c731024738669058b0df93</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical models</topic><topic>Bias</topic><topic>Breakdown</topic><topic>Breakdown voltage</topic><topic>Circuit design</topic><topic>Circuit simulation</topic><topic>Circuit synthesis</topic><topic>Device breakdown</topic><topic>Devices</topic><topic>Drift</topic><topic>Electric breakdown</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>high-voltage</topic><topic>Materials reliability</topic><topic>Mathematical analysis</topic><topic>MOSFETs</topic><topic>on-state breakdown</topic><topic>RESURF</topic><topic>Semiconductor optical amplifiers</topic><topic>Service oriented architecture</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator (SOI)</topic><topic>smartpower</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwantes, S.</creatorcontrib><creatorcontrib>Furthaler, J.</creatorcontrib><creatorcontrib>Schauwecker, B.</creatorcontrib><creatorcontrib>Dietz, F.</creatorcontrib><creatorcontrib>Graf, M.</creatorcontrib><creatorcontrib>Dudek, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on device and materials reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwantes, S.</au><au>Furthaler, J.</au><au>Schauwecker, B.</au><au>Dietz, F.</au><au>Graf, M.</au><au>Dudek, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices</atitle><jtitle>IEEE transactions on device and materials reliability</jtitle><stitle>TDMR</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>6</volume><issue>3</issue><spage>377</spage><epage>385</epage><pages>377-385</pages><issn>1530-4388</issn><eissn>1558-2574</eissn><coden>ITDMA2</coden><abstract>This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-gate electrode of the SOI material will add an additional dimension to the SOA, thereby causing further reliability constraints on the circuit design. For small and negative back-gate bias, the SOA is limited by the on-state breakdown whereas the off-state breakdown sets the limit for positive back-gate bias. For the first time, an analytical model of the breakdown voltage covering the reasonable back-gate voltage range is presented providing a first step toward a closed form circuit simulation of this effect. It is shown that the back-gate potential impacts on the breakdown behavior by modulating the carrier distribution in the drift region, the base transport factor of the parasitic bipolar transistor, and the drift region resistance. Moreover, it is shown that avalanche multiplication is the limiting breakdown mechanism for lateral SOI power devices</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDMR.2006.883128</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-4388 |
ispartof | IEEE transactions on device and materials reliability, 2006-09, Vol.6 (3), p.377-385 |
issn | 1530-4388 1558-2574 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TDMR_2006_883128 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Bias Breakdown Breakdown voltage Circuit design Circuit simulation Circuit synthesis Device breakdown Devices Drift Electric breakdown Electric potential Electrodes high-voltage Materials reliability Mathematical analysis MOSFETs on-state breakdown RESURF Semiconductor optical amplifiers Service oriented architecture Silicon on insulator technology silicon-on-insulator (SOI) smartpower Voltage |
title | Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Back-Gate%20Effect%20on%20the%20on-State%20Breakdown%20Voltage%20of%20Smartpower%20SOI%20Devices&rft.jtitle=IEEE%20transactions%20on%20device%20and%20materials%20reliability&rft.au=Schwantes,%20S.&rft.date=2006-09-01&rft.volume=6&rft.issue=3&rft.spage=377&rft.epage=385&rft.pages=377-385&rft.issn=1530-4388&rft.eissn=1558-2574&rft.coden=ITDMA2&rft_id=info:doi/10.1109/TDMR.2006.883128&rft_dat=%3Cproquest_RIE%3E896203592%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912125849&rft_id=info:pmid/&rft_ieee_id=1717486&rfr_iscdi=true |