Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices

This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on device and materials reliability 2006-09, Vol.6 (3), p.377-385
Hauptverfasser: Schwantes, S., Furthaler, J., Schauwecker, B., Dietz, F., Graf, M., Dudek, V.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 3
container_start_page 377
container_title IEEE transactions on device and materials reliability
container_volume 6
creator Schwantes, S.
Furthaler, J.
Schauwecker, B.
Dietz, F.
Graf, M.
Dudek, V.
description This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-gate electrode of the SOI material will add an additional dimension to the SOA, thereby causing further reliability constraints on the circuit design. For small and negative back-gate bias, the SOA is limited by the on-state breakdown whereas the off-state breakdown sets the limit for positive back-gate bias. For the first time, an analytical model of the breakdown voltage covering the reasonable back-gate voltage range is presented providing a first step toward a closed form circuit simulation of this effect. It is shown that the back-gate potential impacts on the breakdown behavior by modulating the carrier distribution in the drift region, the base transport factor of the parasitic bipolar transistor, and the drift region resistance. Moreover, it is shown that avalanche multiplication is the limiting breakdown mechanism for lateral SOI power devices
doi_str_mv 10.1109/TDMR.2006.883128
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TDMR_2006_883128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1717486</ieee_id><sourcerecordid>896203592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1672-4c9b79dc2fdd0d2e3a96dcecfab6f3c625a15547d71c731024738669058b0df93</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhYMoWKt7wU1w4yp1Hsk8ln1ZC5WCra6EYTq5o2nTTM2klv57EyMIru7lcM6B8wXBNUY9jJG8X46ennsEIdYTgmIiToIOThIRkYTHp81PURRTIc6DC-_XCGHJE9YJ3vqFzo8-86GzYfUB4UCbTTTRFYRja8FUoSt-dFdEi6qRByXoTeoORfjq8kq_Q5NcbHVZ7dwBynAxn4Yj-MoM-MvgzOrcw9Xv7QYvD-Pl8DGazSfTYX8WGcw4iWIjV1ymhtg0RSkBqiVLDRirV8xSw0ii6ykxTzk2nGJEYk4FYxIlYoVSK2k3uGt7d6X73IOv1DbzBvJcF-D2XgnJCKKJJLXz9p9z7fZljcAriQkmiYibOtSaTOm8L8GqXZnVA48KI9XAVg1s1cBWLew6ctNGMgD4s3PMY8HoN9FceV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>912125849</pqid></control><display><type>magazinearticle</type><title>Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Schwantes, S. ; Furthaler, J. ; Schauwecker, B. ; Dietz, F. ; Graf, M. ; Dudek, V.</creator><creatorcontrib>Schwantes, S. ; Furthaler, J. ; Schauwecker, B. ; Dietz, F. ; Graf, M. ; Dudek, V.</creatorcontrib><description>This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-gate electrode of the SOI material will add an additional dimension to the SOA, thereby causing further reliability constraints on the circuit design. For small and negative back-gate bias, the SOA is limited by the on-state breakdown whereas the off-state breakdown sets the limit for positive back-gate bias. For the first time, an analytical model of the breakdown voltage covering the reasonable back-gate voltage range is presented providing a first step toward a closed form circuit simulation of this effect. It is shown that the back-gate potential impacts on the breakdown behavior by modulating the carrier distribution in the drift region, the base transport factor of the parasitic bipolar transistor, and the drift region resistance. Moreover, it is shown that avalanche multiplication is the limiting breakdown mechanism for lateral SOI power devices</description><identifier>ISSN: 1530-4388</identifier><identifier>EISSN: 1558-2574</identifier><identifier>DOI: 10.1109/TDMR.2006.883128</identifier><identifier>CODEN: ITDMA2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Bias ; Breakdown ; Breakdown voltage ; Circuit design ; Circuit simulation ; Circuit synthesis ; Device breakdown ; Devices ; Drift ; Electric breakdown ; Electric potential ; Electrodes ; high-voltage ; Materials reliability ; Mathematical analysis ; MOSFETs ; on-state breakdown ; RESURF ; Semiconductor optical amplifiers ; Service oriented architecture ; Silicon on insulator technology ; silicon-on-insulator (SOI) ; smartpower ; Voltage</subject><ispartof>IEEE transactions on device and materials reliability, 2006-09, Vol.6 (3), p.377-385</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1672-4c9b79dc2fdd0d2e3a96dcecfab6f3c625a15547d71c731024738669058b0df93</citedby><cites>FETCH-LOGICAL-c1672-4c9b79dc2fdd0d2e3a96dcecfab6f3c625a15547d71c731024738669058b0df93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1717486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1717486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schwantes, S.</creatorcontrib><creatorcontrib>Furthaler, J.</creatorcontrib><creatorcontrib>Schauwecker, B.</creatorcontrib><creatorcontrib>Dietz, F.</creatorcontrib><creatorcontrib>Graf, M.</creatorcontrib><creatorcontrib>Dudek, V.</creatorcontrib><title>Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices</title><title>IEEE transactions on device and materials reliability</title><addtitle>TDMR</addtitle><description>This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-gate electrode of the SOI material will add an additional dimension to the SOA, thereby causing further reliability constraints on the circuit design. For small and negative back-gate bias, the SOA is limited by the on-state breakdown whereas the off-state breakdown sets the limit for positive back-gate bias. For the first time, an analytical model of the breakdown voltage covering the reasonable back-gate voltage range is presented providing a first step toward a closed form circuit simulation of this effect. It is shown that the back-gate potential impacts on the breakdown behavior by modulating the carrier distribution in the drift region, the base transport factor of the parasitic bipolar transistor, and the drift region resistance. Moreover, it is shown that avalanche multiplication is the limiting breakdown mechanism for lateral SOI power devices</description><subject>Analytical models</subject><subject>Bias</subject><subject>Breakdown</subject><subject>Breakdown voltage</subject><subject>Circuit design</subject><subject>Circuit simulation</subject><subject>Circuit synthesis</subject><subject>Device breakdown</subject><subject>Devices</subject><subject>Drift</subject><subject>Electric breakdown</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>high-voltage</subject><subject>Materials reliability</subject><subject>Mathematical analysis</subject><subject>MOSFETs</subject><subject>on-state breakdown</subject><subject>RESURF</subject><subject>Semiconductor optical amplifiers</subject><subject>Service oriented architecture</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator (SOI)</subject><subject>smartpower</subject><subject>Voltage</subject><issn>1530-4388</issn><issn>1558-2574</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2006</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhYMoWKt7wU1w4yp1Hsk8ln1ZC5WCra6EYTq5o2nTTM2klv57EyMIru7lcM6B8wXBNUY9jJG8X46ennsEIdYTgmIiToIOThIRkYTHp81PURRTIc6DC-_XCGHJE9YJ3vqFzo8-86GzYfUB4UCbTTTRFYRja8FUoSt-dFdEi6qRByXoTeoORfjq8kq_Q5NcbHVZ7dwBynAxn4Yj-MoM-MvgzOrcw9Xv7QYvD-Pl8DGazSfTYX8WGcw4iWIjV1ymhtg0RSkBqiVLDRirV8xSw0ii6ykxTzk2nGJEYk4FYxIlYoVSK2k3uGt7d6X73IOv1DbzBvJcF-D2XgnJCKKJJLXz9p9z7fZljcAriQkmiYibOtSaTOm8L8GqXZnVA48KI9XAVg1s1cBWLew6ctNGMgD4s3PMY8HoN9FceV4</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Schwantes, S.</creator><creator>Furthaler, J.</creator><creator>Schauwecker, B.</creator><creator>Dietz, F.</creator><creator>Graf, M.</creator><creator>Dudek, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices</title><author>Schwantes, S. ; Furthaler, J. ; Schauwecker, B. ; Dietz, F. ; Graf, M. ; Dudek, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1672-4c9b79dc2fdd0d2e3a96dcecfab6f3c625a15547d71c731024738669058b0df93</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical models</topic><topic>Bias</topic><topic>Breakdown</topic><topic>Breakdown voltage</topic><topic>Circuit design</topic><topic>Circuit simulation</topic><topic>Circuit synthesis</topic><topic>Device breakdown</topic><topic>Devices</topic><topic>Drift</topic><topic>Electric breakdown</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>high-voltage</topic><topic>Materials reliability</topic><topic>Mathematical analysis</topic><topic>MOSFETs</topic><topic>on-state breakdown</topic><topic>RESURF</topic><topic>Semiconductor optical amplifiers</topic><topic>Service oriented architecture</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator (SOI)</topic><topic>smartpower</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwantes, S.</creatorcontrib><creatorcontrib>Furthaler, J.</creatorcontrib><creatorcontrib>Schauwecker, B.</creatorcontrib><creatorcontrib>Dietz, F.</creatorcontrib><creatorcontrib>Graf, M.</creatorcontrib><creatorcontrib>Dudek, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on device and materials reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwantes, S.</au><au>Furthaler, J.</au><au>Schauwecker, B.</au><au>Dietz, F.</au><au>Graf, M.</au><au>Dudek, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices</atitle><jtitle>IEEE transactions on device and materials reliability</jtitle><stitle>TDMR</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>6</volume><issue>3</issue><spage>377</spage><epage>385</epage><pages>377-385</pages><issn>1530-4388</issn><eissn>1558-2574</eissn><coden>ITDMA2</coden><abstract>This paper discusses the impact of the back-gate bias on the on-state drain breakdown voltage of high-voltage silicon-on-insulator (SOI) MOSFETs. This is mandatory in order to understand the physical mechanisms behind the limitations of the safe operation area (SOA) of SOI power devices. The back-gate electrode of the SOI material will add an additional dimension to the SOA, thereby causing further reliability constraints on the circuit design. For small and negative back-gate bias, the SOA is limited by the on-state breakdown whereas the off-state breakdown sets the limit for positive back-gate bias. For the first time, an analytical model of the breakdown voltage covering the reasonable back-gate voltage range is presented providing a first step toward a closed form circuit simulation of this effect. It is shown that the back-gate potential impacts on the breakdown behavior by modulating the carrier distribution in the drift region, the base transport factor of the parasitic bipolar transistor, and the drift region resistance. Moreover, it is shown that avalanche multiplication is the limiting breakdown mechanism for lateral SOI power devices</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDMR.2006.883128</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-4388
ispartof IEEE transactions on device and materials reliability, 2006-09, Vol.6 (3), p.377-385
issn 1530-4388
1558-2574
language eng
recordid cdi_crossref_primary_10_1109_TDMR_2006_883128
source IEEE Electronic Library (IEL)
subjects Analytical models
Bias
Breakdown
Breakdown voltage
Circuit design
Circuit simulation
Circuit synthesis
Device breakdown
Devices
Drift
Electric breakdown
Electric potential
Electrodes
high-voltage
Materials reliability
Mathematical analysis
MOSFETs
on-state breakdown
RESURF
Semiconductor optical amplifiers
Service oriented architecture
Silicon on insulator technology
silicon-on-insulator (SOI)
smartpower
Voltage
title Analysis of the Back-Gate Effect on the on-State Breakdown Voltage of Smartpower SOI Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Back-Gate%20Effect%20on%20the%20on-State%20Breakdown%20Voltage%20of%20Smartpower%20SOI%20Devices&rft.jtitle=IEEE%20transactions%20on%20device%20and%20materials%20reliability&rft.au=Schwantes,%20S.&rft.date=2006-09-01&rft.volume=6&rft.issue=3&rft.spage=377&rft.epage=385&rft.pages=377-385&rft.issn=1530-4388&rft.eissn=1558-2574&rft.coden=ITDMA2&rft_id=info:doi/10.1109/TDMR.2006.883128&rft_dat=%3Cproquest_RIE%3E896203592%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912125849&rft_id=info:pmid/&rft_ieee_id=1717486&rfr_iscdi=true