Design and Analysis of Hybrid Flow Control for Hierarchical Ring Network-on-Chip
A cost-efficient network-on-chip is needed in a scalable many-core systems. Recent multicore processors have leveraged a ring topology and hierarchical ring can increase scalability but presents different challenges, including higher hop count and global ring bottleneck. In this work, we describe a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2016-02, Vol.65 (2), p.480-494 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 2 |
container_start_page | 480 |
container_title | IEEE transactions on computers |
container_volume | 65 |
creator | Hanjoon Kim Gwangsun Kim Hwasoo Yeo Kim, John Seungryoul Maeng |
description | A cost-efficient network-on-chip is needed in a scalable many-core systems. Recent multicore processors have leveraged a ring topology and hierarchical ring can increase scalability but presents different challenges, including higher hop count and global ring bottleneck. In this work, we describe a hierarchical ring topology that we refer to as a transportation-network-inspired network-on-chip (tNoC) that leverages principles from transportation network systems. In particular, we propose a novel hybridflow control for hierarchical ring topology to scale the topology efficiently. The flow control is hybrid in that the channels are allocated on flit granularity while the buffers are allocated on packet granularity. The hybrid flow control enables a simplified router microarchitecture (to minimize per-hop latency) as router input buffers are minimized and buffers are pushed to the edges, either at the output ports or at the hub routers that interconnect the local rings to the global ring-while still supporting virtual channels to avoid protocol deadlock. We describe a packet-quota-system (PQS) and a separate credit network that provide congestion management, support prioritized arbitration in the network, and provide support for multiflit packets. We also provide alternative designs for the credit network and PQS architectures. A detailed evaluation of a 64-core CMP shows that the tNoC improves performance by up to 21 percent compared with a baseline, buffered hierarchical ring topology while reducing NoC energy by 51 percent. |
doi_str_mv | 10.1109/TC.2015.2417525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TC_2015_2417525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7105904</ieee_id><sourcerecordid>1816067942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-bc39a2448566a7750c74777d67e5365be078b2633a3d4964f9c02de37253abf93</originalsourceid><addsrcrecordid>eNpd0DtPwzAUBWALgUQpzAwsllhY0l6_47EKlCJVgFCZIydxWpc0Lnaqqv-eVEUMTHf5zpHuQeiWwIgQ0ONFNqJAxIhyogQVZ2hAhFCJ1kKeowEASRPNOFyiqxjXACAp6AF6f7TRLVts2gpPWtMcoovY13h2KIKr8LTxe5z5tgu-wbUPeOZsMKFcudI0-MO1S_xqu70PX4lvk2zlttfoojZNtDe_d4g-p0-LbJbM355fssk8KRmlXVKUTBvKeSqkNEoJKBVXSlVSWcGkKCyotKCSMcMqriWvdQm0skxRwUxRazZED6febfDfOxu7fONiaZvGtNbvYk5SIkEqzWlP7__Rtd-F_tleKSEV4Vwe1fikyuBjDLbOt8FtTDjkBPLjwvkiy48L578L94m7U8JZa_-0IiA0cPYD1FZ0LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756714462</pqid></control><display><type>article</type><title>Design and Analysis of Hybrid Flow Control for Hierarchical Ring Network-on-Chip</title><source>IEEE Electronic Library (IEL)</source><creator>Hanjoon Kim ; Gwangsun Kim ; Hwasoo Yeo ; Kim, John ; Seungryoul Maeng</creator><creatorcontrib>Hanjoon Kim ; Gwangsun Kim ; Hwasoo Yeo ; Kim, John ; Seungryoul Maeng</creatorcontrib><description>A cost-efficient network-on-chip is needed in a scalable many-core systems. Recent multicore processors have leveraged a ring topology and hierarchical ring can increase scalability but presents different challenges, including higher hop count and global ring bottleneck. In this work, we describe a hierarchical ring topology that we refer to as a transportation-network-inspired network-on-chip (tNoC) that leverages principles from transportation network systems. In particular, we propose a novel hybridflow control for hierarchical ring topology to scale the topology efficiently. The flow control is hybrid in that the channels are allocated on flit granularity while the buffers are allocated on packet granularity. The hybrid flow control enables a simplified router microarchitecture (to minimize per-hop latency) as router input buffers are minimized and buffers are pushed to the edges, either at the output ports or at the hub routers that interconnect the local rings to the global ring-while still supporting virtual channels to avoid protocol deadlock. We describe a packet-quota-system (PQS) and a separate credit network that provide congestion management, support prioritized arbitration in the network, and provide support for multiflit packets. We also provide alternative designs for the credit network and PQS architectures. A detailed evaluation of a 64-core CMP shows that the tNoC improves performance by up to 21 percent compared with a baseline, buffered hierarchical ring topology while reducing NoC energy by 51 percent.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2015.2417525</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Buffers ; Channels ; Design analysis ; Ethernet ; Flow control ; Network topology ; Networks ; On-chip interconnection networks ; parallel architectures ; Ports (Computers) ; processor architectures ; Radiation detectors ; Rings (mathematics) ; Roads ; Routers ; Topology ; Vehicles</subject><ispartof>IEEE transactions on computers, 2016-02, Vol.65 (2), p.480-494</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-bc39a2448566a7750c74777d67e5365be078b2633a3d4964f9c02de37253abf93</citedby><cites>FETCH-LOGICAL-c322t-bc39a2448566a7750c74777d67e5365be078b2633a3d4964f9c02de37253abf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7105904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27925,27926,54759</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7105904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanjoon Kim</creatorcontrib><creatorcontrib>Gwangsun Kim</creatorcontrib><creatorcontrib>Hwasoo Yeo</creatorcontrib><creatorcontrib>Kim, John</creatorcontrib><creatorcontrib>Seungryoul Maeng</creatorcontrib><title>Design and Analysis of Hybrid Flow Control for Hierarchical Ring Network-on-Chip</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>A cost-efficient network-on-chip is needed in a scalable many-core systems. Recent multicore processors have leveraged a ring topology and hierarchical ring can increase scalability but presents different challenges, including higher hop count and global ring bottleneck. In this work, we describe a hierarchical ring topology that we refer to as a transportation-network-inspired network-on-chip (tNoC) that leverages principles from transportation network systems. In particular, we propose a novel hybridflow control for hierarchical ring topology to scale the topology efficiently. The flow control is hybrid in that the channels are allocated on flit granularity while the buffers are allocated on packet granularity. The hybrid flow control enables a simplified router microarchitecture (to minimize per-hop latency) as router input buffers are minimized and buffers are pushed to the edges, either at the output ports or at the hub routers that interconnect the local rings to the global ring-while still supporting virtual channels to avoid protocol deadlock. We describe a packet-quota-system (PQS) and a separate credit network that provide congestion management, support prioritized arbitration in the network, and provide support for multiflit packets. We also provide alternative designs for the credit network and PQS architectures. A detailed evaluation of a 64-core CMP shows that the tNoC improves performance by up to 21 percent compared with a baseline, buffered hierarchical ring topology while reducing NoC energy by 51 percent.</description><subject>Buffers</subject><subject>Channels</subject><subject>Design analysis</subject><subject>Ethernet</subject><subject>Flow control</subject><subject>Network topology</subject><subject>Networks</subject><subject>On-chip interconnection networks</subject><subject>parallel architectures</subject><subject>Ports (Computers)</subject><subject>processor architectures</subject><subject>Radiation detectors</subject><subject>Rings (mathematics)</subject><subject>Roads</subject><subject>Routers</subject><subject>Topology</subject><subject>Vehicles</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0DtPwzAUBWALgUQpzAwsllhY0l6_47EKlCJVgFCZIydxWpc0Lnaqqv-eVEUMTHf5zpHuQeiWwIgQ0ONFNqJAxIhyogQVZ2hAhFCJ1kKeowEASRPNOFyiqxjXACAp6AF6f7TRLVts2gpPWtMcoovY13h2KIKr8LTxe5z5tgu-wbUPeOZsMKFcudI0-MO1S_xqu70PX4lvk2zlttfoojZNtDe_d4g-p0-LbJbM355fssk8KRmlXVKUTBvKeSqkNEoJKBVXSlVSWcGkKCyotKCSMcMqriWvdQm0skxRwUxRazZED6febfDfOxu7fONiaZvGtNbvYk5SIkEqzWlP7__Rtd-F_tleKSEV4Vwe1fikyuBjDLbOt8FtTDjkBPLjwvkiy48L578L94m7U8JZa_-0IiA0cPYD1FZ0LQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Hanjoon Kim</creator><creator>Gwangsun Kim</creator><creator>Hwasoo Yeo</creator><creator>Kim, John</creator><creator>Seungryoul Maeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160201</creationdate><title>Design and Analysis of Hybrid Flow Control for Hierarchical Ring Network-on-Chip</title><author>Hanjoon Kim ; Gwangsun Kim ; Hwasoo Yeo ; Kim, John ; Seungryoul Maeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-bc39a2448566a7750c74777d67e5365be078b2633a3d4964f9c02de37253abf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Buffers</topic><topic>Channels</topic><topic>Design analysis</topic><topic>Ethernet</topic><topic>Flow control</topic><topic>Network topology</topic><topic>Networks</topic><topic>On-chip interconnection networks</topic><topic>parallel architectures</topic><topic>Ports (Computers)</topic><topic>processor architectures</topic><topic>Radiation detectors</topic><topic>Rings (mathematics)</topic><topic>Roads</topic><topic>Routers</topic><topic>Topology</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanjoon Kim</creatorcontrib><creatorcontrib>Gwangsun Kim</creatorcontrib><creatorcontrib>Hwasoo Yeo</creatorcontrib><creatorcontrib>Kim, John</creatorcontrib><creatorcontrib>Seungryoul Maeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanjoon Kim</au><au>Gwangsun Kim</au><au>Hwasoo Yeo</au><au>Kim, John</au><au>Seungryoul Maeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of Hybrid Flow Control for Hierarchical Ring Network-on-Chip</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>65</volume><issue>2</issue><spage>480</spage><epage>494</epage><pages>480-494</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>A cost-efficient network-on-chip is needed in a scalable many-core systems. Recent multicore processors have leveraged a ring topology and hierarchical ring can increase scalability but presents different challenges, including higher hop count and global ring bottleneck. In this work, we describe a hierarchical ring topology that we refer to as a transportation-network-inspired network-on-chip (tNoC) that leverages principles from transportation network systems. In particular, we propose a novel hybridflow control for hierarchical ring topology to scale the topology efficiently. The flow control is hybrid in that the channels are allocated on flit granularity while the buffers are allocated on packet granularity. The hybrid flow control enables a simplified router microarchitecture (to minimize per-hop latency) as router input buffers are minimized and buffers are pushed to the edges, either at the output ports or at the hub routers that interconnect the local rings to the global ring-while still supporting virtual channels to avoid protocol deadlock. We describe a packet-quota-system (PQS) and a separate credit network that provide congestion management, support prioritized arbitration in the network, and provide support for multiflit packets. We also provide alternative designs for the credit network and PQS architectures. A detailed evaluation of a 64-core CMP shows that the tNoC improves performance by up to 21 percent compared with a baseline, buffered hierarchical ring topology while reducing NoC energy by 51 percent.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2015.2417525</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2016-02, Vol.65 (2), p.480-494 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TC_2015_2417525 |
source | IEEE Electronic Library (IEL) |
subjects | Buffers Channels Design analysis Ethernet Flow control Network topology Networks On-chip interconnection networks parallel architectures Ports (Computers) processor architectures Radiation detectors Rings (mathematics) Roads Routers Topology Vehicles |
title | Design and Analysis of Hybrid Flow Control for Hierarchical Ring Network-on-Chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20Hybrid%20Flow%20Control%20for%20Hierarchical%20Ring%20Network-on-Chip&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Hanjoon%20Kim&rft.date=2016-02-01&rft.volume=65&rft.issue=2&rft.spage=480&rft.epage=494&rft.pages=480-494&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2015.2417525&rft_dat=%3Cproquest_RIE%3E1816067942%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756714462&rft_id=info:pmid/&rft_ieee_id=7105904&rfr_iscdi=true |