Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection
Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2024-05, Vol.54 (5), p.3146-3159 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3159 |
---|---|
container_issue | 5 |
container_start_page | 3146 |
container_title | IEEE transactions on cybernetics |
container_volume | 54 |
creator | Lin, Qiuzhen Wu, Zhongjian Ma, Lijia Gong, Maoguo Li, Jianqiang Coello, Carlos A. Coello |
description | Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs. |
doi_str_mv | 10.1109/TCYB.2023.3266241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCYB_2023_3266241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10136182</ieee_id><sourcerecordid>2820030392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-f81634d4be30bbd1cfa77adf67ea43610f29796e87599ff6a8d12b744d824bd33</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMoOow-gCBScOOmY26TNEsdrzDiwoq4Cml7ohl7GZtW0Kc3dUYRs0nO4Ts_Jx9C-wRPCMHqJJ09nU0opmzCqBCUkw00okQkMaVyuvn7FnIH7Xm_wOEkoaWSbbTDZIAUESOU3vZl55psAXnn3iH6LjvjX139HN0tO1e5TxOAOnp03Ut0DnlTLRvvhlZ8ZjwUUdqa2ltoo3soh5Sm3kVb1pQe9tb3GD1cXqSz63h-d3UzO53HOZviLrZhH8YLngHDWVaQ3BopTWGFBMOZINhSJZWARE6VslaYpCA0k5wXCeVZwdgYHa9yl23z1oPvdOV8DmVpamh6r2lCMWaYKRrQo3_oounbOmynGeYYc6bYEEhWVN423rdg9bJ1lWk_NMF6sK4H63qwrtfWw8zhOrnPKih-J34cB-BgBTgA-BNIwhcTyr4Ag_KGQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040043933</pqid></control><display><type>article</type><title>Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Qiuzhen ; Wu, Zhongjian ; Ma, Lijia ; Gong, Maoguo ; Li, Jianqiang ; Coello, Carlos A. Coello</creator><creatorcontrib>Lin, Qiuzhen ; Wu, Zhongjian ; Ma, Lijia ; Gong, Maoguo ; Li, Jianqiang ; Coello, Carlos A. Coello</creatorcontrib><description>Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2023.3266241</identifier><identifier>PMID: 37227916</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Convergence ; Decomposition ; Evolutionary algorithms ; Evolutionary computation ; Knowledge management ; Knowledge transfer ; multiobjective optimization ; Multiple objective analysis ; Multitasking ; multitasking optimization (MTO) ; Optimization ; Search problems ; Searching</subject><ispartof>IEEE transactions on cybernetics, 2024-05, Vol.54 (5), p.3146-3159</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-f81634d4be30bbd1cfa77adf67ea43610f29796e87599ff6a8d12b744d824bd33</citedby><cites>FETCH-LOGICAL-c350t-f81634d4be30bbd1cfa77adf67ea43610f29796e87599ff6a8d12b744d824bd33</cites><orcidid>0000-0003-2415-0401 ; 0000-0002-8435-680X ; 0009-0008-2271-7340 ; 0000-0002-2208-962X ; 0000-0002-0415-8556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10136182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10136182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37227916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Qiuzhen</creatorcontrib><creatorcontrib>Wu, Zhongjian</creatorcontrib><creatorcontrib>Ma, Lijia</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Coello, Carlos A. Coello</creatorcontrib><title>Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs.</description><subject>Convergence</subject><subject>Decomposition</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Multitasking</subject><subject>multitasking optimization (MTO)</subject><subject>Optimization</subject><subject>Search problems</subject><subject>Searching</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKxDAUhoMoOow-gCBScOOmY26TNEsdrzDiwoq4Cml7ohl7GZtW0Kc3dUYRs0nO4Ts_Jx9C-wRPCMHqJJ09nU0opmzCqBCUkw00okQkMaVyuvn7FnIH7Xm_wOEkoaWSbbTDZIAUESOU3vZl55psAXnn3iH6LjvjX139HN0tO1e5TxOAOnp03Ut0DnlTLRvvhlZ8ZjwUUdqa2ltoo3soh5Sm3kVb1pQe9tb3GD1cXqSz63h-d3UzO53HOZviLrZhH8YLngHDWVaQ3BopTWGFBMOZINhSJZWARE6VslaYpCA0k5wXCeVZwdgYHa9yl23z1oPvdOV8DmVpamh6r2lCMWaYKRrQo3_oounbOmynGeYYc6bYEEhWVN423rdg9bJ1lWk_NMF6sK4H63qwrtfWw8zhOrnPKih-J34cB-BgBTgA-BNIwhcTyr4Ag_KGQQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Lin, Qiuzhen</creator><creator>Wu, Zhongjian</creator><creator>Ma, Lijia</creator><creator>Gong, Maoguo</creator><creator>Li, Jianqiang</creator><creator>Coello, Carlos A. Coello</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2415-0401</orcidid><orcidid>https://orcid.org/0000-0002-8435-680X</orcidid><orcidid>https://orcid.org/0009-0008-2271-7340</orcidid><orcidid>https://orcid.org/0000-0002-2208-962X</orcidid><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid></search><sort><creationdate>20240501</creationdate><title>Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection</title><author>Lin, Qiuzhen ; Wu, Zhongjian ; Ma, Lijia ; Gong, Maoguo ; Li, Jianqiang ; Coello, Carlos A. Coello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-f81634d4be30bbd1cfa77adf67ea43610f29796e87599ff6a8d12b744d824bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Decomposition</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Multitasking</topic><topic>multitasking optimization (MTO)</topic><topic>Optimization</topic><topic>Search problems</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qiuzhen</creatorcontrib><creatorcontrib>Wu, Zhongjian</creatorcontrib><creatorcontrib>Ma, Lijia</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Coello, Carlos A. Coello</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Qiuzhen</au><au>Wu, Zhongjian</au><au>Ma, Lijia</au><au>Gong, Maoguo</au><au>Li, Jianqiang</au><au>Coello, Carlos A. Coello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>54</volume><issue>5</issue><spage>3146</spage><epage>3159</epage><pages>3146-3159</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37227916</pmid><doi>10.1109/TCYB.2023.3266241</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2415-0401</orcidid><orcidid>https://orcid.org/0000-0002-8435-680X</orcidid><orcidid>https://orcid.org/0009-0008-2271-7340</orcidid><orcidid>https://orcid.org/0000-0002-2208-962X</orcidid><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2024-05, Vol.54 (5), p.3146-3159 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCYB_2023_3266241 |
source | IEEE Electronic Library (IEL) |
subjects | Convergence Decomposition Evolutionary algorithms Evolutionary computation Knowledge management Knowledge transfer multiobjective optimization Multiple objective analysis Multitasking multitasking optimization (MTO) Optimization Search problems Searching |
title | Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Multitasking%20Optimization%20With%20Decomposition-Based%20Transfer%20Selection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Lin,%20Qiuzhen&rft.date=2024-05-01&rft.volume=54&rft.issue=5&rft.spage=3146&rft.epage=3159&rft.pages=3146-3159&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2023.3266241&rft_dat=%3Cproquest_RIE%3E2820030392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040043933&rft_id=info:pmid/37227916&rft_ieee_id=10136182&rfr_iscdi=true |