Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection

Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2024-05, Vol.54 (5), p.3146-3159
Hauptverfasser: Lin, Qiuzhen, Wu, Zhongjian, Ma, Lijia, Gong, Maoguo, Li, Jianqiang, Coello, Carlos A. Coello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3159
container_issue 5
container_start_page 3146
container_title IEEE transactions on cybernetics
container_volume 54
creator Lin, Qiuzhen
Wu, Zhongjian
Ma, Lijia
Gong, Maoguo
Li, Jianqiang
Coello, Carlos A. Coello
description Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs.
doi_str_mv 10.1109/TCYB.2023.3266241
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCYB_2023_3266241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10136182</ieee_id><sourcerecordid>2820030392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-f81634d4be30bbd1cfa77adf67ea43610f29796e87599ff6a8d12b744d824bd33</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMoOow-gCBScOOmY26TNEsdrzDiwoq4Cml7ohl7GZtW0Kc3dUYRs0nO4Ts_Jx9C-wRPCMHqJJ09nU0opmzCqBCUkw00okQkMaVyuvn7FnIH7Xm_wOEkoaWSbbTDZIAUESOU3vZl55psAXnn3iH6LjvjX139HN0tO1e5TxOAOnp03Ut0DnlTLRvvhlZ8ZjwUUdqa2ltoo3soh5Sm3kVb1pQe9tb3GD1cXqSz63h-d3UzO53HOZviLrZhH8YLngHDWVaQ3BopTWGFBMOZINhSJZWARE6VslaYpCA0k5wXCeVZwdgYHa9yl23z1oPvdOV8DmVpamh6r2lCMWaYKRrQo3_oounbOmynGeYYc6bYEEhWVN423rdg9bJ1lWk_NMF6sK4H63qwrtfWw8zhOrnPKih-J34cB-BgBTgA-BNIwhcTyr4Ag_KGQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040043933</pqid></control><display><type>article</type><title>Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Qiuzhen ; Wu, Zhongjian ; Ma, Lijia ; Gong, Maoguo ; Li, Jianqiang ; Coello, Carlos A. Coello</creator><creatorcontrib>Lin, Qiuzhen ; Wu, Zhongjian ; Ma, Lijia ; Gong, Maoguo ; Li, Jianqiang ; Coello, Carlos A. Coello</creatorcontrib><description>Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2023.3266241</identifier><identifier>PMID: 37227916</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Convergence ; Decomposition ; Evolutionary algorithms ; Evolutionary computation ; Knowledge management ; Knowledge transfer ; multiobjective optimization ; Multiple objective analysis ; Multitasking ; multitasking optimization (MTO) ; Optimization ; Search problems ; Searching</subject><ispartof>IEEE transactions on cybernetics, 2024-05, Vol.54 (5), p.3146-3159</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-f81634d4be30bbd1cfa77adf67ea43610f29796e87599ff6a8d12b744d824bd33</citedby><cites>FETCH-LOGICAL-c350t-f81634d4be30bbd1cfa77adf67ea43610f29796e87599ff6a8d12b744d824bd33</cites><orcidid>0000-0003-2415-0401 ; 0000-0002-8435-680X ; 0009-0008-2271-7340 ; 0000-0002-2208-962X ; 0000-0002-0415-8556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10136182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10136182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37227916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Qiuzhen</creatorcontrib><creatorcontrib>Wu, Zhongjian</creatorcontrib><creatorcontrib>Ma, Lijia</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Coello, Carlos A. Coello</creatorcontrib><title>Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs.</description><subject>Convergence</subject><subject>Decomposition</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Multitasking</subject><subject>multitasking optimization (MTO)</subject><subject>Optimization</subject><subject>Search problems</subject><subject>Searching</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKxDAUhoMoOow-gCBScOOmY26TNEsdrzDiwoq4Cml7ohl7GZtW0Kc3dUYRs0nO4Ts_Jx9C-wRPCMHqJJ09nU0opmzCqBCUkw00okQkMaVyuvn7FnIH7Xm_wOEkoaWSbbTDZIAUESOU3vZl55psAXnn3iH6LjvjX139HN0tO1e5TxOAOnp03Ut0DnlTLRvvhlZ8ZjwUUdqa2ltoo3soh5Sm3kVb1pQe9tb3GD1cXqSz63h-d3UzO53HOZviLrZhH8YLngHDWVaQ3BopTWGFBMOZINhSJZWARE6VslaYpCA0k5wXCeVZwdgYHa9yl23z1oPvdOV8DmVpamh6r2lCMWaYKRrQo3_oounbOmynGeYYc6bYEEhWVN423rdg9bJ1lWk_NMF6sK4H63qwrtfWw8zhOrnPKih-J34cB-BgBTgA-BNIwhcTyr4Ag_KGQQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Lin, Qiuzhen</creator><creator>Wu, Zhongjian</creator><creator>Ma, Lijia</creator><creator>Gong, Maoguo</creator><creator>Li, Jianqiang</creator><creator>Coello, Carlos A. Coello</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2415-0401</orcidid><orcidid>https://orcid.org/0000-0002-8435-680X</orcidid><orcidid>https://orcid.org/0009-0008-2271-7340</orcidid><orcidid>https://orcid.org/0000-0002-2208-962X</orcidid><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid></search><sort><creationdate>20240501</creationdate><title>Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection</title><author>Lin, Qiuzhen ; Wu, Zhongjian ; Ma, Lijia ; Gong, Maoguo ; Li, Jianqiang ; Coello, Carlos A. Coello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-f81634d4be30bbd1cfa77adf67ea43610f29796e87599ff6a8d12b744d824bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Decomposition</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Multitasking</topic><topic>multitasking optimization (MTO)</topic><topic>Optimization</topic><topic>Search problems</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qiuzhen</creatorcontrib><creatorcontrib>Wu, Zhongjian</creatorcontrib><creatorcontrib>Ma, Lijia</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Coello, Carlos A. Coello</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Qiuzhen</au><au>Wu, Zhongjian</au><au>Ma, Lijia</au><au>Gong, Maoguo</au><au>Li, Jianqiang</au><au>Coello, Carlos A. Coello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>54</volume><issue>5</issue><spage>3146</spage><epage>3159</epage><pages>3146-3159</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37227916</pmid><doi>10.1109/TCYB.2023.3266241</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2415-0401</orcidid><orcidid>https://orcid.org/0000-0002-8435-680X</orcidid><orcidid>https://orcid.org/0009-0008-2271-7340</orcidid><orcidid>https://orcid.org/0000-0002-2208-962X</orcidid><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2024-05, Vol.54 (5), p.3146-3159
issn 2168-2267
2168-2275
language eng
recordid cdi_crossref_primary_10_1109_TCYB_2023_3266241
source IEEE Electronic Library (IEL)
subjects Convergence
Decomposition
Evolutionary algorithms
Evolutionary computation
Knowledge management
Knowledge transfer
multiobjective optimization
Multiple objective analysis
Multitasking
multitasking optimization (MTO)
Optimization
Search problems
Searching
title Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Multitasking%20Optimization%20With%20Decomposition-Based%20Transfer%20Selection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Lin,%20Qiuzhen&rft.date=2024-05-01&rft.volume=54&rft.issue=5&rft.spage=3146&rft.epage=3159&rft.pages=3146-3159&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2023.3266241&rft_dat=%3Cproquest_RIE%3E2820030392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040043933&rft_id=info:pmid/37227916&rft_ieee_id=10136182&rfr_iscdi=true