Convolutional Cross-Component Models for Chroma Prediction in Video Coding

In this paper we present two novel approaches for improving intra and inter chroma prediction in video coding. Our research demonstrates that treating the cross-component predictor as a two-dimensional convolutional model can significantly enhance chroma prediction performance. The proposed two conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-10, p.1-1
Hauptverfasser: Astola, Pekka, Aminlou, Alireza, Youvalari, Ramin G., Lainema, Jani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on circuits and systems for video technology
container_volume
creator Astola, Pekka
Aminlou, Alireza
Youvalari, Ramin G.
Lainema, Jani
description In this paper we present two novel approaches for improving intra and inter chroma prediction in video coding. Our research demonstrates that treating the cross-component predictor as a two-dimensional convolutional model can significantly enhance chroma prediction performance. The proposed two convolutional models incorporate multiple spatial neighbors, a bias term, and a nonlinear term. For intra-coded blocks, we derive the model coefficients on the reconstructed neighborhood of the block, while for inter-coded blocks, the model coefficients are determined using prediction samples. To evaluate our methods, we implemented them on top of the ECM software that is currently under exploration by the ITU-T/ISO/IEC Joint Video Experts Team. Our intra cross-component predictor achieves BD-rate savings of {-1.47%, -2.90%, -3.02%}, {-0.92%, -2.04%, -2.32%} (Y, U, V) for the all intra and the random access configurations over ECM-5.0, respectively. Our inter cross-component predictor achieves BD-rate savings of {-0.09%, -1.25%, -1.46%}, {-0.04%, -3.42%, -3.85%} for the random access and the low-delay B configurations over ECM-9.0, respectively. Both proposed methods have been adopted into the ECM software.
doi_str_mv 10.1109/TCSVT.2024.3488078
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2024_3488078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10738512</ieee_id><sourcerecordid>10_1109_TCSVT_2024_3488078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642-84f06dc11835ab0891a12f7a20d7196b10c7d31b73423e86997529eb357f8c043</originalsourceid><addsrcrecordid>eNpNkM1KxDAUhYMoOI6-gLjIC7Tem58mXUrwlxEFy2xL2qQaaZshHQXf3qkzC1f3LO53OHyEXCLkiFBeV-ZtXeUMmMi50BqUPiILlFJnjIE83mWQmGmG8pScTdMnAAot1II8mTh-x_5rG-Joe2pSnKbMxGETRz9u6XN0vp9oFxM1HykOlr4m70I7v9Mw0nVwPlITXRjfz8lJZ_vJXxzuklR3t5V5yFYv94_mZpW1hWCZFh0UrkXUXNoGdIkWWacsA6ewLBqEVjmOjeKCca-LslSSlb7hUnW6BcGXhO1r23lr8l29SWGw6adGqGcZ9Z-MepZRH2TsoKs9FLz3_wDFtUTGfwHQjlrP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convolutional Cross-Component Models for Chroma Prediction in Video Coding</title><source>IEEE Electronic Library (IEL)</source><creator>Astola, Pekka ; Aminlou, Alireza ; Youvalari, Ramin G. ; Lainema, Jani</creator><creatorcontrib>Astola, Pekka ; Aminlou, Alireza ; Youvalari, Ramin G. ; Lainema, Jani</creatorcontrib><description>In this paper we present two novel approaches for improving intra and inter chroma prediction in video coding. Our research demonstrates that treating the cross-component predictor as a two-dimensional convolutional model can significantly enhance chroma prediction performance. The proposed two convolutional models incorporate multiple spatial neighbors, a bias term, and a nonlinear term. For intra-coded blocks, we derive the model coefficients on the reconstructed neighborhood of the block, while for inter-coded blocks, the model coefficients are determined using prediction samples. To evaluate our methods, we implemented them on top of the ECM software that is currently under exploration by the ITU-T/ISO/IEC Joint Video Experts Team. Our intra cross-component predictor achieves BD-rate savings of {-1.47%, -2.90%, -3.02%}, {-0.92%, -2.04%, -2.32%} (Y, U, V) for the all intra and the random access configurations over ECM-5.0, respectively. Our inter cross-component predictor achieves BD-rate savings of {-0.09%, -1.25%, -1.46%}, {-0.04%, -3.42%, -3.85%} for the random access and the low-delay B configurations over ECM-9.0, respectively. Both proposed methods have been adopted into the ECM software.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3488078</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>chroma prediction ; Convolutional codes ; Encoding ; Filters ; Image coding ; Image reconstruction ; Predictive models ; Software ; Streaming media ; Transforms ; versatile video coding ; Video coding</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-10, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1042-4125 ; 0000-0001-7260-0599 ; 0009-0001-4873-8499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10738512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10738512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Astola, Pekka</creatorcontrib><creatorcontrib>Aminlou, Alireza</creatorcontrib><creatorcontrib>Youvalari, Ramin G.</creatorcontrib><creatorcontrib>Lainema, Jani</creatorcontrib><title>Convolutional Cross-Component Models for Chroma Prediction in Video Coding</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper we present two novel approaches for improving intra and inter chroma prediction in video coding. Our research demonstrates that treating the cross-component predictor as a two-dimensional convolutional model can significantly enhance chroma prediction performance. The proposed two convolutional models incorporate multiple spatial neighbors, a bias term, and a nonlinear term. For intra-coded blocks, we derive the model coefficients on the reconstructed neighborhood of the block, while for inter-coded blocks, the model coefficients are determined using prediction samples. To evaluate our methods, we implemented them on top of the ECM software that is currently under exploration by the ITU-T/ISO/IEC Joint Video Experts Team. Our intra cross-component predictor achieves BD-rate savings of {-1.47%, -2.90%, -3.02%}, {-0.92%, -2.04%, -2.32%} (Y, U, V) for the all intra and the random access configurations over ECM-5.0, respectively. Our inter cross-component predictor achieves BD-rate savings of {-0.09%, -1.25%, -1.46%}, {-0.04%, -3.42%, -3.85%} for the random access and the low-delay B configurations over ECM-9.0, respectively. Both proposed methods have been adopted into the ECM software.</description><subject>chroma prediction</subject><subject>Convolutional codes</subject><subject>Encoding</subject><subject>Filters</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Predictive models</subject><subject>Software</subject><subject>Streaming media</subject><subject>Transforms</subject><subject>versatile video coding</subject><subject>Video coding</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KxDAUhYMoOI6-gLjIC7Tem58mXUrwlxEFy2xL2qQaaZshHQXf3qkzC1f3LO53OHyEXCLkiFBeV-ZtXeUMmMi50BqUPiILlFJnjIE83mWQmGmG8pScTdMnAAot1II8mTh-x_5rG-Joe2pSnKbMxGETRz9u6XN0vp9oFxM1HykOlr4m70I7v9Mw0nVwPlITXRjfz8lJZ_vJXxzuklR3t5V5yFYv94_mZpW1hWCZFh0UrkXUXNoGdIkWWacsA6ewLBqEVjmOjeKCca-LslSSlb7hUnW6BcGXhO1r23lr8l29SWGw6adGqGcZ9Z-MepZRH2TsoKs9FLz3_wDFtUTGfwHQjlrP</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Astola, Pekka</creator><creator>Aminlou, Alireza</creator><creator>Youvalari, Ramin G.</creator><creator>Lainema, Jani</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1042-4125</orcidid><orcidid>https://orcid.org/0000-0001-7260-0599</orcidid><orcidid>https://orcid.org/0009-0001-4873-8499</orcidid></search><sort><creationdate>20241029</creationdate><title>Convolutional Cross-Component Models for Chroma Prediction in Video Coding</title><author>Astola, Pekka ; Aminlou, Alireza ; Youvalari, Ramin G. ; Lainema, Jani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642-84f06dc11835ab0891a12f7a20d7196b10c7d31b73423e86997529eb357f8c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chroma prediction</topic><topic>Convolutional codes</topic><topic>Encoding</topic><topic>Filters</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Predictive models</topic><topic>Software</topic><topic>Streaming media</topic><topic>Transforms</topic><topic>versatile video coding</topic><topic>Video coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Astola, Pekka</creatorcontrib><creatorcontrib>Aminlou, Alireza</creatorcontrib><creatorcontrib>Youvalari, Ramin G.</creatorcontrib><creatorcontrib>Lainema, Jani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Astola, Pekka</au><au>Aminlou, Alireza</au><au>Youvalari, Ramin G.</au><au>Lainema, Jani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional Cross-Component Models for Chroma Prediction in Video Coding</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-10-29</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper we present two novel approaches for improving intra and inter chroma prediction in video coding. Our research demonstrates that treating the cross-component predictor as a two-dimensional convolutional model can significantly enhance chroma prediction performance. The proposed two convolutional models incorporate multiple spatial neighbors, a bias term, and a nonlinear term. For intra-coded blocks, we derive the model coefficients on the reconstructed neighborhood of the block, while for inter-coded blocks, the model coefficients are determined using prediction samples. To evaluate our methods, we implemented them on top of the ECM software that is currently under exploration by the ITU-T/ISO/IEC Joint Video Experts Team. Our intra cross-component predictor achieves BD-rate savings of {-1.47%, -2.90%, -3.02%}, {-0.92%, -2.04%, -2.32%} (Y, U, V) for the all intra and the random access configurations over ECM-5.0, respectively. Our inter cross-component predictor achieves BD-rate savings of {-0.09%, -1.25%, -1.46%}, {-0.04%, -3.42%, -3.85%} for the random access and the low-delay B configurations over ECM-9.0, respectively. Both proposed methods have been adopted into the ECM software.</abstract><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3488078</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1042-4125</orcidid><orcidid>https://orcid.org/0000-0001-7260-0599</orcidid><orcidid>https://orcid.org/0009-0001-4873-8499</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-10, p.1-1
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2024_3488078
source IEEE Electronic Library (IEL)
subjects chroma prediction
Convolutional codes
Encoding
Filters
Image coding
Image reconstruction
Predictive models
Software
Streaming media
Transforms
versatile video coding
Video coding
title Convolutional Cross-Component Models for Chroma Prediction in Video Coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20Cross-Component%20Models%20for%20Chroma%20Prediction%20in%20Video%20Coding&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Astola,%20Pekka&rft.date=2024-10-29&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3488078&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSVT_2024_3488078%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10738512&rfr_iscdi=true