Outlier-Probability-Based Feature Adaptation for Robust Unsupervised Anomaly Detection on Contaminated Training Data

In the realm of large-scale industrial manufacturing, the precise detection of defective parts stands as a critical imperative. While current unsupervised anomaly detection algorithms exhibit commendable accuracy when applied to clean training datasets, their susceptibility to contaminated training...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-10, Vol.34 (10), p.10023-10035
Hauptverfasser: Zhou, Jianxiong, Wu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!