Outlier-Probability-Based Feature Adaptation for Robust Unsupervised Anomaly Detection on Contaminated Training Data
In the realm of large-scale industrial manufacturing, the precise detection of defective parts stands as a critical imperative. While current unsupervised anomaly detection algorithms exhibit commendable accuracy when applied to clean training datasets, their susceptibility to contaminated training...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2024-10, Vol.34 (10), p.10023-10035 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!