Quaternion-Valued Correlation Learning for Few-Shot Semantic Segmentation

Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Encouraging progress has been made for FSS by leveraging semantic features learned from base classes with sufficient training samples to represent novel classes. The correlation-based methods lack the abil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2023-05, Vol.33 (5), p.2102-2115
Hauptverfasser: Zheng, Zewen, Huang, Guoheng, Yuan, Xiaochen, Pun, Chi-Man, Liu, Hongrui, Ling, Wing-Kuen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2115
container_issue 5
container_start_page 2102
container_title IEEE transactions on circuits and systems for video technology
container_volume 33
creator Zheng, Zewen
Huang, Guoheng
Yuan, Xiaochen
Pun, Chi-Man
Liu, Hongrui
Ling, Wing-Kuen
description Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Encouraging progress has been made for FSS by leveraging semantic features learned from base classes with sufficient training samples to represent novel classes. The correlation-based methods lack the ability to consider interaction of the two subspace matching scores due to the inherent nature of the real-valued 2D convolutions. In this paper, we introduce a quaternion perspective on correlation learning and propose a novel Quaternion-valued Correlation Learning Network (QCLNet), with the aim to alleviate the computational burden of high-dimensional correlation tensor and explore internal latent interaction between query and support images by leveraging operations defined by the established quaternion algebra. Specifically, our QCLNet is formulated as a hyper-complex valued network and represents correlation tensors in the quaternion domain, which uses quaternion-valued convolution to explore the external relations of query subspace when considering the hidden relationship of the support sub-dimension in the quaternion space. Extensive experiments on the PASCAL- 5^{i} and COCO- 20^{i} datasets demonstrate that our method outperforms the existing state-of-the-art methods effectively.
doi_str_mv 10.1109/TCSVT.2022.3223150
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2022_3223150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9954424</ieee_id><sourcerecordid>2809905938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7c2e503d358e3afd02ec9a625bb76fcf985049e2cf0f10bda0e4d7444f59b80c3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKtfQC8LnrdOJkk3OUqxWiiItPYastlJ3dLu1uwu4rd3-wdP85h5bx78GLvnMOIczNNyslgtRwiII4EouIILNuBK6RQR1GWvQfFUI1fX7KZpNgBcapkN2Oyjcy3FqqyrdOW2HRXJpI6Rtq7tV8mcXH-r1kmoYzKln3TxVbfJgnauakvfi_WOqvbovWVXwW0bujvPIfucviwnb-n8_XU2eZ6nHo1q08wjKRCFUJqECwUgeePGqPI8GwcfjFYgDaEPEDjkhQOSRSalDMrkGrwYssfT332svztqWrupu1j1lRY1GAPKCN278OTysW6aSMHuY7lz8ddysAdk9ojMHpDZM7I-9HAKlUT0HzBGSYlS_AEmOGhG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809905938</pqid></control><display><type>article</type><title>Quaternion-Valued Correlation Learning for Few-Shot Semantic Segmentation</title><source>IEEE Xplore</source><creator>Zheng, Zewen ; Huang, Guoheng ; Yuan, Xiaochen ; Pun, Chi-Man ; Liu, Hongrui ; Ling, Wing-Kuen</creator><creatorcontrib>Zheng, Zewen ; Huang, Guoheng ; Yuan, Xiaochen ; Pun, Chi-Man ; Liu, Hongrui ; Ling, Wing-Kuen</creatorcontrib><description><![CDATA[Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Encouraging progress has been made for FSS by leveraging semantic features learned from base classes with sufficient training samples to represent novel classes. The correlation-based methods lack the ability to consider interaction of the two subspace matching scores due to the inherent nature of the real-valued 2D convolutions. In this paper, we introduce a quaternion perspective on correlation learning and propose a novel Quaternion-valued Correlation Learning Network (QCLNet), with the aim to alleviate the computational burden of high-dimensional correlation tensor and explore internal latent interaction between query and support images by leveraging operations defined by the established quaternion algebra. Specifically, our QCLNet is formulated as a hyper-complex valued network and represents correlation tensors in the quaternion domain, which uses quaternion-valued convolution to explore the external relations of query subspace when considering the hidden relationship of the support sub-dimension in the quaternion space. Extensive experiments on the PASCAL-<inline-formula> <tex-math notation="LaTeX">5^{i} </tex-math></inline-formula> and COCO-<inline-formula> <tex-math notation="LaTeX">20^{i} </tex-math></inline-formula> datasets demonstrate that our method outperforms the existing state-of-the-art methods effectively.]]></description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3223150</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convolution ; Correlation ; correlation learning ; Few-shot learning ; Image segmentation ; Learning ; Mathematical analysis ; Quantum cascade lasers ; quaternion-valued convolution ; Quaternions ; Semantic segmentation ; Semantics ; Task analysis ; Tensors</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-05, Vol.33 (5), p.2102-2115</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7c2e503d358e3afd02ec9a625bb76fcf985049e2cf0f10bda0e4d7444f59b80c3</citedby><cites>FETCH-LOGICAL-c295t-7c2e503d358e3afd02ec9a625bb76fcf985049e2cf0f10bda0e4d7444f59b80c3</cites><orcidid>0000-0003-1788-3746 ; 0000-0002-7490-6695 ; 0000-0003-4158-5597 ; 0000-0002-2540-2765 ; 0000-0002-3640-3229 ; 0000-0002-0633-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9954424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9954424$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Zewen</creatorcontrib><creatorcontrib>Huang, Guoheng</creatorcontrib><creatorcontrib>Yuan, Xiaochen</creatorcontrib><creatorcontrib>Pun, Chi-Man</creatorcontrib><creatorcontrib>Liu, Hongrui</creatorcontrib><creatorcontrib>Ling, Wing-Kuen</creatorcontrib><title>Quaternion-Valued Correlation Learning for Few-Shot Semantic Segmentation</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description><![CDATA[Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Encouraging progress has been made for FSS by leveraging semantic features learned from base classes with sufficient training samples to represent novel classes. The correlation-based methods lack the ability to consider interaction of the two subspace matching scores due to the inherent nature of the real-valued 2D convolutions. In this paper, we introduce a quaternion perspective on correlation learning and propose a novel Quaternion-valued Correlation Learning Network (QCLNet), with the aim to alleviate the computational burden of high-dimensional correlation tensor and explore internal latent interaction between query and support images by leveraging operations defined by the established quaternion algebra. Specifically, our QCLNet is formulated as a hyper-complex valued network and represents correlation tensors in the quaternion domain, which uses quaternion-valued convolution to explore the external relations of query subspace when considering the hidden relationship of the support sub-dimension in the quaternion space. Extensive experiments on the PASCAL-<inline-formula> <tex-math notation="LaTeX">5^{i} </tex-math></inline-formula> and COCO-<inline-formula> <tex-math notation="LaTeX">20^{i} </tex-math></inline-formula> datasets demonstrate that our method outperforms the existing state-of-the-art methods effectively.]]></description><subject>Convolution</subject><subject>Correlation</subject><subject>correlation learning</subject><subject>Few-shot learning</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Quantum cascade lasers</subject><subject>quaternion-valued convolution</subject><subject>Quaternions</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Tensors</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKtfQC8LnrdOJkk3OUqxWiiItPYastlJ3dLu1uwu4rd3-wdP85h5bx78GLvnMOIczNNyslgtRwiII4EouIILNuBK6RQR1GWvQfFUI1fX7KZpNgBcapkN2Oyjcy3FqqyrdOW2HRXJpI6Rtq7tV8mcXH-r1kmoYzKln3TxVbfJgnauakvfi_WOqvbovWVXwW0bujvPIfucviwnb-n8_XU2eZ6nHo1q08wjKRCFUJqECwUgeePGqPI8GwcfjFYgDaEPEDjkhQOSRSalDMrkGrwYssfT332svztqWrupu1j1lRY1GAPKCN278OTysW6aSMHuY7lz8ddysAdk9ojMHpDZM7I-9HAKlUT0HzBGSYlS_AEmOGhG</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zheng, Zewen</creator><creator>Huang, Guoheng</creator><creator>Yuan, Xiaochen</creator><creator>Pun, Chi-Man</creator><creator>Liu, Hongrui</creator><creator>Ling, Wing-Kuen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1788-3746</orcidid><orcidid>https://orcid.org/0000-0002-7490-6695</orcidid><orcidid>https://orcid.org/0000-0003-4158-5597</orcidid><orcidid>https://orcid.org/0000-0002-2540-2765</orcidid><orcidid>https://orcid.org/0000-0002-3640-3229</orcidid><orcidid>https://orcid.org/0000-0002-0633-7224</orcidid></search><sort><creationdate>20230501</creationdate><title>Quaternion-Valued Correlation Learning for Few-Shot Semantic Segmentation</title><author>Zheng, Zewen ; Huang, Guoheng ; Yuan, Xiaochen ; Pun, Chi-Man ; Liu, Hongrui ; Ling, Wing-Kuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7c2e503d358e3afd02ec9a625bb76fcf985049e2cf0f10bda0e4d7444f59b80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolution</topic><topic>Correlation</topic><topic>correlation learning</topic><topic>Few-shot learning</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Quantum cascade lasers</topic><topic>quaternion-valued convolution</topic><topic>Quaternions</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zewen</creatorcontrib><creatorcontrib>Huang, Guoheng</creatorcontrib><creatorcontrib>Yuan, Xiaochen</creatorcontrib><creatorcontrib>Pun, Chi-Man</creatorcontrib><creatorcontrib>Liu, Hongrui</creatorcontrib><creatorcontrib>Ling, Wing-Kuen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Zewen</au><au>Huang, Guoheng</au><au>Yuan, Xiaochen</au><au>Pun, Chi-Man</au><au>Liu, Hongrui</au><au>Ling, Wing-Kuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quaternion-Valued Correlation Learning for Few-Shot Semantic Segmentation</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>2102</spage><epage>2115</epage><pages>2102-2115</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract><![CDATA[Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Encouraging progress has been made for FSS by leveraging semantic features learned from base classes with sufficient training samples to represent novel classes. The correlation-based methods lack the ability to consider interaction of the two subspace matching scores due to the inherent nature of the real-valued 2D convolutions. In this paper, we introduce a quaternion perspective on correlation learning and propose a novel Quaternion-valued Correlation Learning Network (QCLNet), with the aim to alleviate the computational burden of high-dimensional correlation tensor and explore internal latent interaction between query and support images by leveraging operations defined by the established quaternion algebra. Specifically, our QCLNet is formulated as a hyper-complex valued network and represents correlation tensors in the quaternion domain, which uses quaternion-valued convolution to explore the external relations of query subspace when considering the hidden relationship of the support sub-dimension in the quaternion space. Extensive experiments on the PASCAL-<inline-formula> <tex-math notation="LaTeX">5^{i} </tex-math></inline-formula> and COCO-<inline-formula> <tex-math notation="LaTeX">20^{i} </tex-math></inline-formula> datasets demonstrate that our method outperforms the existing state-of-the-art methods effectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3223150</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1788-3746</orcidid><orcidid>https://orcid.org/0000-0002-7490-6695</orcidid><orcidid>https://orcid.org/0000-0003-4158-5597</orcidid><orcidid>https://orcid.org/0000-0002-2540-2765</orcidid><orcidid>https://orcid.org/0000-0002-3640-3229</orcidid><orcidid>https://orcid.org/0000-0002-0633-7224</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2023-05, Vol.33 (5), p.2102-2115
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2022_3223150
source IEEE Xplore
subjects Convolution
Correlation
correlation learning
Few-shot learning
Image segmentation
Learning
Mathematical analysis
Quantum cascade lasers
quaternion-valued convolution
Quaternions
Semantic segmentation
Semantics
Task analysis
Tensors
title Quaternion-Valued Correlation Learning for Few-Shot Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quaternion-Valued%20Correlation%20Learning%20for%20Few-Shot%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zheng,%20Zewen&rft.date=2023-05-01&rft.volume=33&rft.issue=5&rft.spage=2102&rft.epage=2115&rft.pages=2102-2115&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3223150&rft_dat=%3Cproquest_RIE%3E2809905938%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809905938&rft_id=info:pmid/&rft_ieee_id=9954424&rfr_iscdi=true