Feature-Based Style Randomization for Domain Generalization
As a recent noticeable topic, domain generalization (DG) aims to first learn a generic model on multiple source domains and then directly generalize to an arbitrary unseen target domain without any additional adaption. In previous DG models, by generating virtual data to supplement observed source d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-08, Vol.32 (8), p.5495-5509 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5509 |
---|---|
container_issue | 8 |
container_start_page | 5495 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Wang, Yue Qi, Lei Shi, Yinghuan Gao, Yang |
description | As a recent noticeable topic, domain generalization (DG) aims to first learn a generic model on multiple source domains and then directly generalize to an arbitrary unseen target domain without any additional adaption. In previous DG models, by generating virtual data to supplement observed source domains, the data augmentation based methods have shown its effectiveness. To simulate the possible unseen domains, most of them enrich the diversity of original data via image-level style transformation. However, we argue that the potential styles are hard to be exhaustively illustrated and fully augmented due to the limited referred styles, leading the diversity could not be always guaranteed. Unlike image-level augmentation, we in this paper develop a simple yet effective feature-based style randomization module to achieve feature-level augmentation, which can produce random styles via integrating random noise into the original style. Compared with existing image-level augmentation, our feature-level augmentation favors a more goal-oriented and sample-diverse way. Furthermore, to sufficiently explore the efficacy of the proposed module, we design a novel progressive training strategy to enable all parameters of the network to be fully trained. Extensive experiments on three standard benchmark datasets, i.e. , PACS, VLCS and Office-Home, highlight the superiority of our method compared to the state-of-the-art methods. |
doi_str_mv | 10.1109/TCSVT.2022.3152615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2022_3152615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9716108</ieee_id><sourcerecordid>2697571442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-fd9d41475d816e13f03b8bf8a55fa5b5684d76a1b2bb6b796494f429f08080263</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Lnrdmspl84EmrrUJBsNVrSLoJbGk3mmwP9de7tUXmMAPzPjPwEHINdARA9d1iPP9cjBhlbFQBMgF4QgaAqErGKJ72M0UoFQM8Jxc5rygFrrgckPuJt902-fLRZl8X82639sW7beu4aX5s18S2CDEVT3Fjm7aY-tYnuz5uLslZsOvsr459SD4mz4vxSzl7m76OH2blkmnsylDrmgOXWCsQHqpAK6dcUBYxWHQoFK-lsOCYc8JJLbjmgTMdqOqLiWpIbg93v1L83vrcmVXcprZ_aZjQEiVwzvoUO6SWKeacfDBfqdnYtDNAzV6S-ZNk9pLMUVIP3Rygxnv_D2gJAqiqfgHfemH3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697571442</pqid></control><display><type>article</type><title>Feature-Based Style Randomization for Domain Generalization</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yue ; Qi, Lei ; Shi, Yinghuan ; Gao, Yang</creator><creatorcontrib>Wang, Yue ; Qi, Lei ; Shi, Yinghuan ; Gao, Yang</creatorcontrib><description>As a recent noticeable topic, domain generalization (DG) aims to first learn a generic model on multiple source domains and then directly generalize to an arbitrary unseen target domain without any additional adaption. In previous DG models, by generating virtual data to supplement observed source domains, the data augmentation based methods have shown its effectiveness. To simulate the possible unseen domains, most of them enrich the diversity of original data via image-level style transformation. However, we argue that the potential styles are hard to be exhaustively illustrated and fully augmented due to the limited referred styles, leading the diversity could not be always guaranteed. Unlike image-level augmentation, we in this paper develop a simple yet effective feature-based style randomization module to achieve feature-level augmentation, which can produce random styles via integrating random noise into the original style. Compared with existing image-level augmentation, our feature-level augmentation favors a more goal-oriented and sample-diverse way. Furthermore, to sufficiently explore the efficacy of the proposed module, we design a novel progressive training strategy to enable all parameters of the network to be fully trained. Extensive experiments on three standard benchmark datasets, i.e. , PACS, VLCS and Office-Home, highlight the superiority of our method compared to the state-of-the-art methods.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3152615</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Data augmentation ; Data models ; Domain generalization ; Domains ; Feature extraction ; Modules ; Random noise ; Randomization ; style randomization ; Task analysis ; Training ; Training data</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-08, Vol.32 (8), p.5495-5509</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-fd9d41475d816e13f03b8bf8a55fa5b5684d76a1b2bb6b796494f429f08080263</citedby><cites>FETCH-LOGICAL-c295t-fd9d41475d816e13f03b8bf8a55fa5b5684d76a1b2bb6b796494f429f08080263</cites><orcidid>0000-0003-2100-2067 ; 0000-0001-7091-0702 ; 0000-0003-4534-7318 ; 0000-0002-2488-1813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9716108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9716108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Qi, Lei</creatorcontrib><creatorcontrib>Shi, Yinghuan</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><title>Feature-Based Style Randomization for Domain Generalization</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>As a recent noticeable topic, domain generalization (DG) aims to first learn a generic model on multiple source domains and then directly generalize to an arbitrary unseen target domain without any additional adaption. In previous DG models, by generating virtual data to supplement observed source domains, the data augmentation based methods have shown its effectiveness. To simulate the possible unseen domains, most of them enrich the diversity of original data via image-level style transformation. However, we argue that the potential styles are hard to be exhaustively illustrated and fully augmented due to the limited referred styles, leading the diversity could not be always guaranteed. Unlike image-level augmentation, we in this paper develop a simple yet effective feature-based style randomization module to achieve feature-level augmentation, which can produce random styles via integrating random noise into the original style. Compared with existing image-level augmentation, our feature-level augmentation favors a more goal-oriented and sample-diverse way. Furthermore, to sufficiently explore the efficacy of the proposed module, we design a novel progressive training strategy to enable all parameters of the network to be fully trained. Extensive experiments on three standard benchmark datasets, i.e. , PACS, VLCS and Office-Home, highlight the superiority of our method compared to the state-of-the-art methods.</description><subject>Adaptation models</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Domain generalization</subject><subject>Domains</subject><subject>Feature extraction</subject><subject>Modules</subject><subject>Random noise</subject><subject>Randomization</subject><subject>style randomization</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Lnrdmspl84EmrrUJBsNVrSLoJbGk3mmwP9de7tUXmMAPzPjPwEHINdARA9d1iPP9cjBhlbFQBMgF4QgaAqErGKJ72M0UoFQM8Jxc5rygFrrgckPuJt902-fLRZl8X82639sW7beu4aX5s18S2CDEVT3Fjm7aY-tYnuz5uLslZsOvsr459SD4mz4vxSzl7m76OH2blkmnsylDrmgOXWCsQHqpAK6dcUBYxWHQoFK-lsOCYc8JJLbjmgTMdqOqLiWpIbg93v1L83vrcmVXcprZ_aZjQEiVwzvoUO6SWKeacfDBfqdnYtDNAzV6S-ZNk9pLMUVIP3Rygxnv_D2gJAqiqfgHfemH3</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Yue</creator><creator>Qi, Lei</creator><creator>Shi, Yinghuan</creator><creator>Gao, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2100-2067</orcidid><orcidid>https://orcid.org/0000-0001-7091-0702</orcidid><orcidid>https://orcid.org/0000-0003-4534-7318</orcidid><orcidid>https://orcid.org/0000-0002-2488-1813</orcidid></search><sort><creationdate>20220801</creationdate><title>Feature-Based Style Randomization for Domain Generalization</title><author>Wang, Yue ; Qi, Lei ; Shi, Yinghuan ; Gao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-fd9d41475d816e13f03b8bf8a55fa5b5684d76a1b2bb6b796494f429f08080263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Domain generalization</topic><topic>Domains</topic><topic>Feature extraction</topic><topic>Modules</topic><topic>Random noise</topic><topic>Randomization</topic><topic>style randomization</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Qi, Lei</creatorcontrib><creatorcontrib>Shi, Yinghuan</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yue</au><au>Qi, Lei</au><au>Shi, Yinghuan</au><au>Gao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature-Based Style Randomization for Domain Generalization</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>8</issue><spage>5495</spage><epage>5509</epage><pages>5495-5509</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>As a recent noticeable topic, domain generalization (DG) aims to first learn a generic model on multiple source domains and then directly generalize to an arbitrary unseen target domain without any additional adaption. In previous DG models, by generating virtual data to supplement observed source domains, the data augmentation based methods have shown its effectiveness. To simulate the possible unseen domains, most of them enrich the diversity of original data via image-level style transformation. However, we argue that the potential styles are hard to be exhaustively illustrated and fully augmented due to the limited referred styles, leading the diversity could not be always guaranteed. Unlike image-level augmentation, we in this paper develop a simple yet effective feature-based style randomization module to achieve feature-level augmentation, which can produce random styles via integrating random noise into the original style. Compared with existing image-level augmentation, our feature-level augmentation favors a more goal-oriented and sample-diverse way. Furthermore, to sufficiently explore the efficacy of the proposed module, we design a novel progressive training strategy to enable all parameters of the network to be fully trained. Extensive experiments on three standard benchmark datasets, i.e. , PACS, VLCS and Office-Home, highlight the superiority of our method compared to the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3152615</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2100-2067</orcidid><orcidid>https://orcid.org/0000-0001-7091-0702</orcidid><orcidid>https://orcid.org/0000-0003-4534-7318</orcidid><orcidid>https://orcid.org/0000-0002-2488-1813</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-08, Vol.32 (8), p.5495-5509 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2022_3152615 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Data augmentation Data models Domain generalization Domains Feature extraction Modules Random noise Randomization style randomization Task analysis Training Training data |
title | Feature-Based Style Randomization for Domain Generalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature-Based%20Style%20Randomization%20for%20Domain%20Generalization&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Wang,%20Yue&rft.date=2022-08-01&rft.volume=32&rft.issue=8&rft.spage=5495&rft.epage=5509&rft.pages=5495-5509&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3152615&rft_dat=%3Cproquest_RIE%3E2697571442%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697571442&rft_id=info:pmid/&rft_ieee_id=9716108&rfr_iscdi=true |