Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge
Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characte...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-06, Vol.32 (6), p.4081-4095 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4095 |
---|---|
container_issue | 6 |
container_start_page | 4081 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Tang, Weixuan Li, Bin Barni, Mauro Li, Jin Huang, Jiwu |
description | Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characteristics of the 8\times 8 DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. Following a domain-transition design paradigm, the policy network is composed of three modules, i.e., pixel-level texture complexity evaluation module, DCT feature extraction module, and mode-wise rearrangement module. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with 8\times 8 DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature-based and modern CNN-based steganalyzers. |
doi_str_mv | 10.1109/TCSVT.2021.3115600 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2021_3115600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9552010</ieee_id><sourcerecordid>2672806131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7c6149406e579869d88cd9c7e249ffe808d27d3b8ba1a6a6e6fbf8540d6157ef3</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwAnCpxLnDTps0OaIyxmASiA2uUdompdPWjLQD9va0G-JkW_p-W_4IuUQYIYK8WaTz98WIAsVRhMg4wBEZIGMipBTYcdcDw1BQZKfkrGmWABiLOBmQ1-l6491XVZdB6po2mBnt636yzgePL-NJMG9NqWtXer352AXZLhj_bFauantoD9y5ta7q4Kl23ytTlOacnFi9aszFXx2St_vxIn0IZ8-TaXo7C3MqWRsmOcdYxsANS6TgshAiL2SeGBpLa40AUdCkiDKRadRcc8NtZgWLoeDIEmOjIbk-7O0e-NyaplVLt_V1d1JRnlABHCPsKHqgcu-axhurNr5aa79TCKp3p_buVO9O_bnrQleHUGWM-Q9IxiggRL8Tumn_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672806131</pqid></control><display><type>article</type><title>Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Weixuan ; Li, Bin ; Barni, Mauro ; Li, Jin ; Huang, Jiwu</creator><creatorcontrib>Tang, Weixuan ; Li, Bin ; Barni, Mauro ; Li, Jin ; Huang, Jiwu</creatorcontrib><description><![CDATA[Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characteristics of the <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. Following a domain-transition design paradigm, the policy network is composed of three modules, i.e., pixel-level texture complexity evaluation module, DCT feature extraction module, and mode-wise rearrangement module. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature-based and modern CNN-based steganalyzers.]]></description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3115600</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; Additives ; automatic cost learning ; Complexity theory ; Correlation ; Costs ; DCT coefficient ; Discrete cosine transforms ; Domains ; Embedding ; embedding policy ; Feature extraction ; Image compression ; JPEG steganography ; Learning ; Modules ; Optimization ; Policies ; reinforcement learning ; Steganography ; Transform coding</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-06, Vol.32 (6), p.4081-4095</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7c6149406e579869d88cd9c7e249ffe808d27d3b8ba1a6a6e6fbf8540d6157ef3</citedby><cites>FETCH-LOGICAL-c295t-7c6149406e579869d88cd9c7e249ffe808d27d3b8ba1a6a6e6fbf8540d6157ef3</cites><orcidid>0000-0002-7368-0866 ; 0000-0003-0385-8793 ; 0000-0002-2613-5451 ; 0000-0002-7625-5689 ; 0000-0002-4082-1140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9552010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9552010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Weixuan</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Barni, Mauro</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Huang, Jiwu</creatorcontrib><title>Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description><![CDATA[Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characteristics of the <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. Following a domain-transition design paradigm, the policy network is composed of three modules, i.e., pixel-level texture complexity evaluation module, DCT feature extraction module, and mode-wise rearrangement module. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature-based and modern CNN-based steganalyzers.]]></description><subject>Ablation</subject><subject>Additives</subject><subject>automatic cost learning</subject><subject>Complexity theory</subject><subject>Correlation</subject><subject>Costs</subject><subject>DCT coefficient</subject><subject>Discrete cosine transforms</subject><subject>Domains</subject><subject>Embedding</subject><subject>embedding policy</subject><subject>Feature extraction</subject><subject>Image compression</subject><subject>JPEG steganography</subject><subject>Learning</subject><subject>Modules</subject><subject>Optimization</subject><subject>Policies</subject><subject>reinforcement learning</subject><subject>Steganography</subject><subject>Transform coding</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAMhiMEEmPwAnCpxLnDTps0OaIyxmASiA2uUdompdPWjLQD9va0G-JkW_p-W_4IuUQYIYK8WaTz98WIAsVRhMg4wBEZIGMipBTYcdcDw1BQZKfkrGmWABiLOBmQ1-l6491XVZdB6po2mBnt636yzgePL-NJMG9NqWtXer352AXZLhj_bFauantoD9y5ta7q4Kl23ytTlOacnFi9aszFXx2St_vxIn0IZ8-TaXo7C3MqWRsmOcdYxsANS6TgshAiL2SeGBpLa40AUdCkiDKRadRcc8NtZgWLoeDIEmOjIbk-7O0e-NyaplVLt_V1d1JRnlABHCPsKHqgcu-axhurNr5aa79TCKp3p_buVO9O_bnrQleHUGWM-Q9IxiggRL8Tumn_</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Tang, Weixuan</creator><creator>Li, Bin</creator><creator>Barni, Mauro</creator><creator>Li, Jin</creator><creator>Huang, Jiwu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7368-0866</orcidid><orcidid>https://orcid.org/0000-0003-0385-8793</orcidid><orcidid>https://orcid.org/0000-0002-2613-5451</orcidid><orcidid>https://orcid.org/0000-0002-7625-5689</orcidid><orcidid>https://orcid.org/0000-0002-4082-1140</orcidid></search><sort><creationdate>20220601</creationdate><title>Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge</title><author>Tang, Weixuan ; Li, Bin ; Barni, Mauro ; Li, Jin ; Huang, Jiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7c6149406e579869d88cd9c7e249ffe808d27d3b8ba1a6a6e6fbf8540d6157ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Additives</topic><topic>automatic cost learning</topic><topic>Complexity theory</topic><topic>Correlation</topic><topic>Costs</topic><topic>DCT coefficient</topic><topic>Discrete cosine transforms</topic><topic>Domains</topic><topic>Embedding</topic><topic>embedding policy</topic><topic>Feature extraction</topic><topic>Image compression</topic><topic>JPEG steganography</topic><topic>Learning</topic><topic>Modules</topic><topic>Optimization</topic><topic>Policies</topic><topic>reinforcement learning</topic><topic>Steganography</topic><topic>Transform coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Weixuan</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Barni, Mauro</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Huang, Jiwu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Weixuan</au><au>Li, Bin</au><au>Barni, Mauro</au><au>Li, Jin</au><au>Huang, Jiwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>6</issue><spage>4081</spage><epage>4095</epage><pages>4081-4095</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract><![CDATA[Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characteristics of the <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. Following a domain-transition design paradigm, the policy network is composed of three modules, i.e., pixel-level texture complexity evaluation module, DCT feature extraction module, and mode-wise rearrangement module. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature-based and modern CNN-based steganalyzers.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3115600</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7368-0866</orcidid><orcidid>https://orcid.org/0000-0003-0385-8793</orcidid><orcidid>https://orcid.org/0000-0002-2613-5451</orcidid><orcidid>https://orcid.org/0000-0002-7625-5689</orcidid><orcidid>https://orcid.org/0000-0002-4082-1140</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-06, Vol.32 (6), p.4081-4095 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2021_3115600 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation Additives automatic cost learning Complexity theory Correlation Costs DCT coefficient Discrete cosine transforms Domains Embedding embedding policy Feature extraction Image compression JPEG steganography Learning Modules Optimization Policies reinforcement learning Steganography Transform coding |
title | Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Cost%20Learning%20for%20JPEG%20Steganography%20by%20Exploiting%20JPEG%20Domain%20Knowledge&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Tang,%20Weixuan&rft.date=2022-06-01&rft.volume=32&rft.issue=6&rft.spage=4081&rft.epage=4095&rft.pages=4081-4095&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3115600&rft_dat=%3Cproquest_RIE%3E2672806131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672806131&rft_id=info:pmid/&rft_ieee_id=9552010&rfr_iscdi=true |