Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge

Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2022-06, Vol.32 (6), p.4081-4095
Hauptverfasser: Tang, Weixuan, Li, Bin, Barni, Mauro, Li, Jin, Huang, Jiwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4095
container_issue 6
container_start_page 4081
container_title IEEE transactions on circuits and systems for video technology
container_volume 32
creator Tang, Weixuan
Li, Bin
Barni, Mauro
Li, Jin
Huang, Jiwu
description Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characteristics of the 8\times 8 DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. Following a domain-transition design paradigm, the policy network is composed of three modules, i.e., pixel-level texture complexity evaluation module, DCT feature extraction module, and mode-wise rearrangement module. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with 8\times 8 DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature-based and modern CNN-based steganalyzers.
doi_str_mv 10.1109/TCSVT.2021.3115600
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2021_3115600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9552010</ieee_id><sourcerecordid>2672806131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7c6149406e579869d88cd9c7e249ffe808d27d3b8ba1a6a6e6fbf8540d6157ef3</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwAnCpxLnDTps0OaIyxmASiA2uUdompdPWjLQD9va0G-JkW_p-W_4IuUQYIYK8WaTz98WIAsVRhMg4wBEZIGMipBTYcdcDw1BQZKfkrGmWABiLOBmQ1-l6491XVZdB6po2mBnt636yzgePL-NJMG9NqWtXer352AXZLhj_bFauantoD9y5ta7q4Kl23ytTlOacnFi9aszFXx2St_vxIn0IZ8-TaXo7C3MqWRsmOcdYxsANS6TgshAiL2SeGBpLa40AUdCkiDKRadRcc8NtZgWLoeDIEmOjIbk-7O0e-NyaplVLt_V1d1JRnlABHCPsKHqgcu-axhurNr5aa79TCKp3p_buVO9O_bnrQleHUGWM-Q9IxiggRL8Tumn_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672806131</pqid></control><display><type>article</type><title>Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Weixuan ; Li, Bin ; Barni, Mauro ; Li, Jin ; Huang, Jiwu</creator><creatorcontrib>Tang, Weixuan ; Li, Bin ; Barni, Mauro ; Li, Jin ; Huang, Jiwu</creatorcontrib><description><![CDATA[Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characteristics of the <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. Following a domain-transition design paradigm, the policy network is composed of three modules, i.e., pixel-level texture complexity evaluation module, DCT feature extraction module, and mode-wise rearrangement module. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature-based and modern CNN-based steganalyzers.]]></description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3115600</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; Additives ; automatic cost learning ; Complexity theory ; Correlation ; Costs ; DCT coefficient ; Discrete cosine transforms ; Domains ; Embedding ; embedding policy ; Feature extraction ; Image compression ; JPEG steganography ; Learning ; Modules ; Optimization ; Policies ; reinforcement learning ; Steganography ; Transform coding</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-06, Vol.32 (6), p.4081-4095</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7c6149406e579869d88cd9c7e249ffe808d27d3b8ba1a6a6e6fbf8540d6157ef3</citedby><cites>FETCH-LOGICAL-c295t-7c6149406e579869d88cd9c7e249ffe808d27d3b8ba1a6a6e6fbf8540d6157ef3</cites><orcidid>0000-0002-7368-0866 ; 0000-0003-0385-8793 ; 0000-0002-2613-5451 ; 0000-0002-7625-5689 ; 0000-0002-4082-1140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9552010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9552010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Weixuan</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Barni, Mauro</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Huang, Jiwu</creatorcontrib><title>Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description><![CDATA[Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characteristics of the <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. Following a domain-transition design paradigm, the policy network is composed of three modules, i.e., pixel-level texture complexity evaluation module, DCT feature extraction module, and mode-wise rearrangement module. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature-based and modern CNN-based steganalyzers.]]></description><subject>Ablation</subject><subject>Additives</subject><subject>automatic cost learning</subject><subject>Complexity theory</subject><subject>Correlation</subject><subject>Costs</subject><subject>DCT coefficient</subject><subject>Discrete cosine transforms</subject><subject>Domains</subject><subject>Embedding</subject><subject>embedding policy</subject><subject>Feature extraction</subject><subject>Image compression</subject><subject>JPEG steganography</subject><subject>Learning</subject><subject>Modules</subject><subject>Optimization</subject><subject>Policies</subject><subject>reinforcement learning</subject><subject>Steganography</subject><subject>Transform coding</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAMhiMEEmPwAnCpxLnDTps0OaIyxmASiA2uUdompdPWjLQD9va0G-JkW_p-W_4IuUQYIYK8WaTz98WIAsVRhMg4wBEZIGMipBTYcdcDw1BQZKfkrGmWABiLOBmQ1-l6491XVZdB6po2mBnt636yzgePL-NJMG9NqWtXer352AXZLhj_bFauantoD9y5ta7q4Kl23ytTlOacnFi9aszFXx2St_vxIn0IZ8-TaXo7C3MqWRsmOcdYxsANS6TgshAiL2SeGBpLa40AUdCkiDKRadRcc8NtZgWLoeDIEmOjIbk-7O0e-NyaplVLt_V1d1JRnlABHCPsKHqgcu-axhurNr5aa79TCKp3p_buVO9O_bnrQleHUGWM-Q9IxiggRL8Tumn_</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Tang, Weixuan</creator><creator>Li, Bin</creator><creator>Barni, Mauro</creator><creator>Li, Jin</creator><creator>Huang, Jiwu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7368-0866</orcidid><orcidid>https://orcid.org/0000-0003-0385-8793</orcidid><orcidid>https://orcid.org/0000-0002-2613-5451</orcidid><orcidid>https://orcid.org/0000-0002-7625-5689</orcidid><orcidid>https://orcid.org/0000-0002-4082-1140</orcidid></search><sort><creationdate>20220601</creationdate><title>Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge</title><author>Tang, Weixuan ; Li, Bin ; Barni, Mauro ; Li, Jin ; Huang, Jiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7c6149406e579869d88cd9c7e249ffe808d27d3b8ba1a6a6e6fbf8540d6157ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Additives</topic><topic>automatic cost learning</topic><topic>Complexity theory</topic><topic>Correlation</topic><topic>Costs</topic><topic>DCT coefficient</topic><topic>Discrete cosine transforms</topic><topic>Domains</topic><topic>Embedding</topic><topic>embedding policy</topic><topic>Feature extraction</topic><topic>Image compression</topic><topic>JPEG steganography</topic><topic>Learning</topic><topic>Modules</topic><topic>Optimization</topic><topic>Policies</topic><topic>reinforcement learning</topic><topic>Steganography</topic><topic>Transform coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Weixuan</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Barni, Mauro</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Huang, Jiwu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Weixuan</au><au>Li, Bin</au><au>Barni, Mauro</au><au>Li, Jin</au><au>Huang, Jiwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>6</issue><spage>4081</spage><epage>4095</epage><pages>4081-4095</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract><![CDATA[Although significant progress has been achieved recently in automatic learning of steganographic cost, the existing methods designed for spatial images cannot be directly applied to JPEG images which are more common media in daily life. The difficulties of migration are mainly caused by the characteristics of the <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. Following a domain-transition design paradigm, the policy network is composed of three modules, i.e., pixel-level texture complexity evaluation module, DCT feature extraction module, and mode-wise rearrangement module. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula> DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature-based and modern CNN-based steganalyzers.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3115600</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7368-0866</orcidid><orcidid>https://orcid.org/0000-0003-0385-8793</orcidid><orcidid>https://orcid.org/0000-0002-2613-5451</orcidid><orcidid>https://orcid.org/0000-0002-7625-5689</orcidid><orcidid>https://orcid.org/0000-0002-4082-1140</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2022-06, Vol.32 (6), p.4081-4095
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2021_3115600
source IEEE Electronic Library (IEL)
subjects Ablation
Additives
automatic cost learning
Complexity theory
Correlation
Costs
DCT coefficient
Discrete cosine transforms
Domains
Embedding
embedding policy
Feature extraction
Image compression
JPEG steganography
Learning
Modules
Optimization
Policies
reinforcement learning
Steganography
Transform coding
title Improving Cost Learning for JPEG Steganography by Exploiting JPEG Domain Knowledge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Cost%20Learning%20for%20JPEG%20Steganography%20by%20Exploiting%20JPEG%20Domain%20Knowledge&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Tang,%20Weixuan&rft.date=2022-06-01&rft.volume=32&rft.issue=6&rft.spage=4081&rft.epage=4095&rft.pages=4081-4095&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3115600&rft_dat=%3Cproquest_RIE%3E2672806131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672806131&rft_id=info:pmid/&rft_ieee_id=9552010&rfr_iscdi=true