Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding
In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near compon...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-02, Vol.32 (2), p.813-825 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 825 |
---|---|
container_issue | 2 |
container_start_page | 813 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Xiong, Jian Gao, Hao Wang, Miaohui Li, Hongliang Lin, Weisi |
description | In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near components are projected to generate different 2D images (video frames), respectively. As a result, the generated video is with high resolutions and double frame rates, so the V-PCC has huge computational complexity. This paper proposes an occupancy map guided fast V-PCC method. Firstly, the relationship between the prediction coding and block complexity is studied based on a local linear image gradient model. Secondly, according to the V-PCC strategies of patch projection and block generation, we investigate the differences of rate-distortion characteristics between different types of blocks, and the temporal correlations between the far and near layers. Finally, by taking advantage of the fact that occupancy maps can explicitly indicate the block types, we propose an occupancy map guided fast coding method, in which coding is performed on the different types of blocks. Experiments have tested typical dynamic point clouds, and shown that the proposed method achieves an average 43.66% time-saving at the cost of only 0.27% and 0.16% Bjontegaard Delta (BD) rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-Signal-Noise-Ratio (PSNR), respectively. |
doi_str_mv | 10.1109/TCSVT.2021.3063501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2021_3063501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9367235</ieee_id><sourcerecordid>2625369203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d4a8fb127c3b50f590e11279a29b04fe16384c7d8829c0fe48441a074770337c3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCxxDll_RfbNyDQglRUJEqvlus4KFUbhzg59O0xtOK0s6uZ3dWH0DWBCSGg75bFx2o5oUDJhEHOBJATNCJCqIxSEKdJgyCZokSco4sYNwCEKy5H6H7h3NDaxu3xm23xbKhLX-KpjT1eJRmyRxvT4Gnf2F3t8Huomx4X2zCUuAhl3XxdorPKbqO_OtYx-pw-L4uXbL6YvRYP88xRLfqs5FZVa0KlY2sBldDgSeq0pXoNvPIkZ4o7WSpFtYPKp-84sSC5lMBYSo3R7WFv24XvwcfebMLQNemkoTkVLNc0GceIHlyuCzF2vjJtV-9stzcEzC8p80fK_JIyR1IpdHMI1d77_4BmuaRMsB-SDWH1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625369203</pqid></control><display><type>article</type><title>Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding</title><source>IEEE Electronic Library (IEL)</source><creator>Xiong, Jian ; Gao, Hao ; Wang, Miaohui ; Li, Hongliang ; Lin, Weisi</creator><creatorcontrib>Xiong, Jian ; Gao, Hao ; Wang, Miaohui ; Li, Hongliang ; Lin, Weisi</creatorcontrib><description>In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near components are projected to generate different 2D images (video frames), respectively. As a result, the generated video is with high resolutions and double frame rates, so the V-PCC has huge computational complexity. This paper proposes an occupancy map guided fast V-PCC method. Firstly, the relationship between the prediction coding and block complexity is studied based on a local linear image gradient model. Secondly, according to the V-PCC strategies of patch projection and block generation, we investigate the differences of rate-distortion characteristics between different types of blocks, and the temporal correlations between the far and near layers. Finally, by taking advantage of the fact that occupancy maps can explicitly indicate the block types, we propose an occupancy map guided fast coding method, in which coding is performed on the different types of blocks. Experiments have tested typical dynamic point clouds, and shown that the proposed method achieves an average 43.66% time-saving at the cost of only 0.27% and 0.16% Bjontegaard Delta (BD) rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-Signal-Noise-Ratio (PSNR), respectively.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3063501</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coding ; Complexity ; Correlation ; Encoding ; Forecasting ; Geometry ; HEVC ; Image coding ; Image compression ; Occupancy ; occupancy map ; Point cloud ; Rate-distortion ; Three dimensional models ; Three-dimensional displays ; Two dimensional displays ; V-PCC ; video coding ; Video compression</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-02, Vol.32 (2), p.813-825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d4a8fb127c3b50f590e11279a29b04fe16384c7d8829c0fe48441a074770337c3</citedby><cites>FETCH-LOGICAL-c295t-d4a8fb127c3b50f590e11279a29b04fe16384c7d8829c0fe48441a074770337c3</cites><orcidid>0000-0002-7481-095X ; 0000-0003-0148-3713 ; 0000-0001-9866-1947 ; 0000-0003-1125-9299 ; 0000-0002-4720-4102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9367235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9367235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Wang, Miaohui</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Lin, Weisi</creatorcontrib><title>Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near components are projected to generate different 2D images (video frames), respectively. As a result, the generated video is with high resolutions and double frame rates, so the V-PCC has huge computational complexity. This paper proposes an occupancy map guided fast V-PCC method. Firstly, the relationship between the prediction coding and block complexity is studied based on a local linear image gradient model. Secondly, according to the V-PCC strategies of patch projection and block generation, we investigate the differences of rate-distortion characteristics between different types of blocks, and the temporal correlations between the far and near layers. Finally, by taking advantage of the fact that occupancy maps can explicitly indicate the block types, we propose an occupancy map guided fast coding method, in which coding is performed on the different types of blocks. Experiments have tested typical dynamic point clouds, and shown that the proposed method achieves an average 43.66% time-saving at the cost of only 0.27% and 0.16% Bjontegaard Delta (BD) rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-Signal-Noise-Ratio (PSNR), respectively.</description><subject>Coding</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Encoding</subject><subject>Forecasting</subject><subject>Geometry</subject><subject>HEVC</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Occupancy</subject><subject>occupancy map</subject><subject>Point cloud</subject><subject>Rate-distortion</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><subject>V-PCC</subject><subject>video coding</subject><subject>Video compression</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCxxDll_RfbNyDQglRUJEqvlus4KFUbhzg59O0xtOK0s6uZ3dWH0DWBCSGg75bFx2o5oUDJhEHOBJATNCJCqIxSEKdJgyCZokSco4sYNwCEKy5H6H7h3NDaxu3xm23xbKhLX-KpjT1eJRmyRxvT4Gnf2F3t8Huomx4X2zCUuAhl3XxdorPKbqO_OtYx-pw-L4uXbL6YvRYP88xRLfqs5FZVa0KlY2sBldDgSeq0pXoNvPIkZ4o7WSpFtYPKp-84sSC5lMBYSo3R7WFv24XvwcfebMLQNemkoTkVLNc0GceIHlyuCzF2vjJtV-9stzcEzC8p80fK_JIyR1IpdHMI1d77_4BmuaRMsB-SDWH1</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Xiong, Jian</creator><creator>Gao, Hao</creator><creator>Wang, Miaohui</creator><creator>Li, Hongliang</creator><creator>Lin, Weisi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7481-095X</orcidid><orcidid>https://orcid.org/0000-0003-0148-3713</orcidid><orcidid>https://orcid.org/0000-0001-9866-1947</orcidid><orcidid>https://orcid.org/0000-0003-1125-9299</orcidid><orcidid>https://orcid.org/0000-0002-4720-4102</orcidid></search><sort><creationdate>20220201</creationdate><title>Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding</title><author>Xiong, Jian ; Gao, Hao ; Wang, Miaohui ; Li, Hongliang ; Lin, Weisi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d4a8fb127c3b50f590e11279a29b04fe16384c7d8829c0fe48441a074770337c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coding</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Encoding</topic><topic>Forecasting</topic><topic>Geometry</topic><topic>HEVC</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Occupancy</topic><topic>occupancy map</topic><topic>Point cloud</topic><topic>Rate-distortion</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><topic>V-PCC</topic><topic>video coding</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Wang, Miaohui</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Lin, Weisi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiong, Jian</au><au>Gao, Hao</au><au>Wang, Miaohui</au><au>Li, Hongliang</au><au>Lin, Weisi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><spage>813</spage><epage>825</epage><pages>813-825</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near components are projected to generate different 2D images (video frames), respectively. As a result, the generated video is with high resolutions and double frame rates, so the V-PCC has huge computational complexity. This paper proposes an occupancy map guided fast V-PCC method. Firstly, the relationship between the prediction coding and block complexity is studied based on a local linear image gradient model. Secondly, according to the V-PCC strategies of patch projection and block generation, we investigate the differences of rate-distortion characteristics between different types of blocks, and the temporal correlations between the far and near layers. Finally, by taking advantage of the fact that occupancy maps can explicitly indicate the block types, we propose an occupancy map guided fast coding method, in which coding is performed on the different types of blocks. Experiments have tested typical dynamic point clouds, and shown that the proposed method achieves an average 43.66% time-saving at the cost of only 0.27% and 0.16% Bjontegaard Delta (BD) rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-Signal-Noise-Ratio (PSNR), respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3063501</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7481-095X</orcidid><orcidid>https://orcid.org/0000-0003-0148-3713</orcidid><orcidid>https://orcid.org/0000-0001-9866-1947</orcidid><orcidid>https://orcid.org/0000-0003-1125-9299</orcidid><orcidid>https://orcid.org/0000-0002-4720-4102</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-02, Vol.32 (2), p.813-825 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2021_3063501 |
source | IEEE Electronic Library (IEL) |
subjects | Coding Complexity Correlation Encoding Forecasting Geometry HEVC Image coding Image compression Occupancy occupancy map Point cloud Rate-distortion Three dimensional models Three-dimensional displays Two dimensional displays V-PCC video coding Video compression |
title | Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Occupancy%20Map%20Guided%20Fast%20Video-Based%20Dynamic%20Point%20Cloud%20Coding&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Xiong,%20Jian&rft.date=2022-02-01&rft.volume=32&rft.issue=2&rft.spage=813&rft.epage=825&rft.pages=813-825&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3063501&rft_dat=%3Cproquest_RIE%3E2625369203%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625369203&rft_id=info:pmid/&rft_ieee_id=9367235&rfr_iscdi=true |