Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding

In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near compon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2022-02, Vol.32 (2), p.813-825
Hauptverfasser: Xiong, Jian, Gao, Hao, Wang, Miaohui, Li, Hongliang, Lin, Weisi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 2
container_start_page 813
container_title IEEE transactions on circuits and systems for video technology
container_volume 32
creator Xiong, Jian
Gao, Hao
Wang, Miaohui
Li, Hongliang
Lin, Weisi
description In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near components are projected to generate different 2D images (video frames), respectively. As a result, the generated video is with high resolutions and double frame rates, so the V-PCC has huge computational complexity. This paper proposes an occupancy map guided fast V-PCC method. Firstly, the relationship between the prediction coding and block complexity is studied based on a local linear image gradient model. Secondly, according to the V-PCC strategies of patch projection and block generation, we investigate the differences of rate-distortion characteristics between different types of blocks, and the temporal correlations between the far and near layers. Finally, by taking advantage of the fact that occupancy maps can explicitly indicate the block types, we propose an occupancy map guided fast coding method, in which coding is performed on the different types of blocks. Experiments have tested typical dynamic point clouds, and shown that the proposed method achieves an average 43.66% time-saving at the cost of only 0.27% and 0.16% Bjontegaard Delta (BD) rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-Signal-Noise-Ratio (PSNR), respectively.
doi_str_mv 10.1109/TCSVT.2021.3063501
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2021_3063501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9367235</ieee_id><sourcerecordid>2625369203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d4a8fb127c3b50f590e11279a29b04fe16384c7d8829c0fe48441a074770337c3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCxxDll_RfbNyDQglRUJEqvlus4KFUbhzg59O0xtOK0s6uZ3dWH0DWBCSGg75bFx2o5oUDJhEHOBJATNCJCqIxSEKdJgyCZokSco4sYNwCEKy5H6H7h3NDaxu3xm23xbKhLX-KpjT1eJRmyRxvT4Gnf2F3t8Huomx4X2zCUuAhl3XxdorPKbqO_OtYx-pw-L4uXbL6YvRYP88xRLfqs5FZVa0KlY2sBldDgSeq0pXoNvPIkZ4o7WSpFtYPKp-84sSC5lMBYSo3R7WFv24XvwcfebMLQNemkoTkVLNc0GceIHlyuCzF2vjJtV-9stzcEzC8p80fK_JIyR1IpdHMI1d77_4BmuaRMsB-SDWH1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625369203</pqid></control><display><type>article</type><title>Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding</title><source>IEEE Electronic Library (IEL)</source><creator>Xiong, Jian ; Gao, Hao ; Wang, Miaohui ; Li, Hongliang ; Lin, Weisi</creator><creatorcontrib>Xiong, Jian ; Gao, Hao ; Wang, Miaohui ; Li, Hongliang ; Lin, Weisi</creatorcontrib><description>In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near components are projected to generate different 2D images (video frames), respectively. As a result, the generated video is with high resolutions and double frame rates, so the V-PCC has huge computational complexity. This paper proposes an occupancy map guided fast V-PCC method. Firstly, the relationship between the prediction coding and block complexity is studied based on a local linear image gradient model. Secondly, according to the V-PCC strategies of patch projection and block generation, we investigate the differences of rate-distortion characteristics between different types of blocks, and the temporal correlations between the far and near layers. Finally, by taking advantage of the fact that occupancy maps can explicitly indicate the block types, we propose an occupancy map guided fast coding method, in which coding is performed on the different types of blocks. Experiments have tested typical dynamic point clouds, and shown that the proposed method achieves an average 43.66% time-saving at the cost of only 0.27% and 0.16% Bjontegaard Delta (BD) rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-Signal-Noise-Ratio (PSNR), respectively.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3063501</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coding ; Complexity ; Correlation ; Encoding ; Forecasting ; Geometry ; HEVC ; Image coding ; Image compression ; Occupancy ; occupancy map ; Point cloud ; Rate-distortion ; Three dimensional models ; Three-dimensional displays ; Two dimensional displays ; V-PCC ; video coding ; Video compression</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-02, Vol.32 (2), p.813-825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d4a8fb127c3b50f590e11279a29b04fe16384c7d8829c0fe48441a074770337c3</citedby><cites>FETCH-LOGICAL-c295t-d4a8fb127c3b50f590e11279a29b04fe16384c7d8829c0fe48441a074770337c3</cites><orcidid>0000-0002-7481-095X ; 0000-0003-0148-3713 ; 0000-0001-9866-1947 ; 0000-0003-1125-9299 ; 0000-0002-4720-4102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9367235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9367235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Wang, Miaohui</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Lin, Weisi</creatorcontrib><title>Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near components are projected to generate different 2D images (video frames), respectively. As a result, the generated video is with high resolutions and double frame rates, so the V-PCC has huge computational complexity. This paper proposes an occupancy map guided fast V-PCC method. Firstly, the relationship between the prediction coding and block complexity is studied based on a local linear image gradient model. Secondly, according to the V-PCC strategies of patch projection and block generation, we investigate the differences of rate-distortion characteristics between different types of blocks, and the temporal correlations between the far and near layers. Finally, by taking advantage of the fact that occupancy maps can explicitly indicate the block types, we propose an occupancy map guided fast coding method, in which coding is performed on the different types of blocks. Experiments have tested typical dynamic point clouds, and shown that the proposed method achieves an average 43.66% time-saving at the cost of only 0.27% and 0.16% Bjontegaard Delta (BD) rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-Signal-Noise-Ratio (PSNR), respectively.</description><subject>Coding</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Encoding</subject><subject>Forecasting</subject><subject>Geometry</subject><subject>HEVC</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Occupancy</subject><subject>occupancy map</subject><subject>Point cloud</subject><subject>Rate-distortion</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><subject>V-PCC</subject><subject>video coding</subject><subject>Video compression</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCxxDll_RfbNyDQglRUJEqvlus4KFUbhzg59O0xtOK0s6uZ3dWH0DWBCSGg75bFx2o5oUDJhEHOBJATNCJCqIxSEKdJgyCZokSco4sYNwCEKy5H6H7h3NDaxu3xm23xbKhLX-KpjT1eJRmyRxvT4Gnf2F3t8Huomx4X2zCUuAhl3XxdorPKbqO_OtYx-pw-L4uXbL6YvRYP88xRLfqs5FZVa0KlY2sBldDgSeq0pXoNvPIkZ4o7WSpFtYPKp-84sSC5lMBYSo3R7WFv24XvwcfebMLQNemkoTkVLNc0GceIHlyuCzF2vjJtV-9stzcEzC8p80fK_JIyR1IpdHMI1d77_4BmuaRMsB-SDWH1</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Xiong, Jian</creator><creator>Gao, Hao</creator><creator>Wang, Miaohui</creator><creator>Li, Hongliang</creator><creator>Lin, Weisi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7481-095X</orcidid><orcidid>https://orcid.org/0000-0003-0148-3713</orcidid><orcidid>https://orcid.org/0000-0001-9866-1947</orcidid><orcidid>https://orcid.org/0000-0003-1125-9299</orcidid><orcidid>https://orcid.org/0000-0002-4720-4102</orcidid></search><sort><creationdate>20220201</creationdate><title>Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding</title><author>Xiong, Jian ; Gao, Hao ; Wang, Miaohui ; Li, Hongliang ; Lin, Weisi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d4a8fb127c3b50f590e11279a29b04fe16384c7d8829c0fe48441a074770337c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coding</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Encoding</topic><topic>Forecasting</topic><topic>Geometry</topic><topic>HEVC</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Occupancy</topic><topic>occupancy map</topic><topic>Point cloud</topic><topic>Rate-distortion</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><topic>V-PCC</topic><topic>video coding</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Wang, Miaohui</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Lin, Weisi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiong, Jian</au><au>Gao, Hao</au><au>Wang, Miaohui</au><au>Li, Hongliang</au><au>Lin, Weisi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><spage>813</spage><epage>825</epage><pages>813-825</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected into patches, and then the patches are padded into 2D images suitable for the video compression framework. However, the patch projection-based method produces a large number of empty pixels; the far and near components are projected to generate different 2D images (video frames), respectively. As a result, the generated video is with high resolutions and double frame rates, so the V-PCC has huge computational complexity. This paper proposes an occupancy map guided fast V-PCC method. Firstly, the relationship between the prediction coding and block complexity is studied based on a local linear image gradient model. Secondly, according to the V-PCC strategies of patch projection and block generation, we investigate the differences of rate-distortion characteristics between different types of blocks, and the temporal correlations between the far and near layers. Finally, by taking advantage of the fact that occupancy maps can explicitly indicate the block types, we propose an occupancy map guided fast coding method, in which coding is performed on the different types of blocks. Experiments have tested typical dynamic point clouds, and shown that the proposed method achieves an average 43.66% time-saving at the cost of only 0.27% and 0.16% Bjontegaard Delta (BD) rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-Signal-Noise-Ratio (PSNR), respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3063501</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7481-095X</orcidid><orcidid>https://orcid.org/0000-0003-0148-3713</orcidid><orcidid>https://orcid.org/0000-0001-9866-1947</orcidid><orcidid>https://orcid.org/0000-0003-1125-9299</orcidid><orcidid>https://orcid.org/0000-0002-4720-4102</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2022-02, Vol.32 (2), p.813-825
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2021_3063501
source IEEE Electronic Library (IEL)
subjects Coding
Complexity
Correlation
Encoding
Forecasting
Geometry
HEVC
Image coding
Image compression
Occupancy
occupancy map
Point cloud
Rate-distortion
Three dimensional models
Three-dimensional displays
Two dimensional displays
V-PCC
video coding
Video compression
title Occupancy Map Guided Fast Video-Based Dynamic Point Cloud Coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Occupancy%20Map%20Guided%20Fast%20Video-Based%20Dynamic%20Point%20Cloud%20Coding&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Xiong,%20Jian&rft.date=2022-02-01&rft.volume=32&rft.issue=2&rft.spage=813&rft.epage=825&rft.pages=813-825&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3063501&rft_dat=%3Cproquest_RIE%3E2625369203%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625369203&rft_id=info:pmid/&rft_ieee_id=9367235&rfr_iscdi=true