A Fast Iterative Method for Removing Impulsive Noise From Sparse Signals

In this paper, we propose a new method to reconstruct a signal corrupted by noise where both signal and noise are sparse but in different domains. The main contribution of our algorithm is its low complexity; it has much lower run-time than most other algorithms. The reconstruction quality of our al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2021-01, Vol.31 (1), p.38-48
Hauptverfasser: Sadrizadeh, Sahar, Zarmehi, Nematollah, Kangarshahi, Ehsan Asadi, Abin, Hamidreza, Marvasti, Farokh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 38
container_title IEEE transactions on circuits and systems for video technology
container_volume 31
creator Sadrizadeh, Sahar
Zarmehi, Nematollah
Kangarshahi, Ehsan Asadi
Abin, Hamidreza
Marvasti, Farokh
description In this paper, we propose a new method to reconstruct a signal corrupted by noise where both signal and noise are sparse but in different domains. The main contribution of our algorithm is its low complexity; it has much lower run-time than most other algorithms. The reconstruction quality of our algorithm is both objectively (in terms of PSNR and SSIM) and subjectively better or comparable to other state-of-the-art algorithms. We provide a cost function for our problem, present an iterative method to find its local minimum, and provide the analysis of the algorithm. As an application of this problem, we apply our algorithm for Salt-and-Pepper noise (SPN) and Random-Valued Impulsive Noise (RVIN) removal from images and compare our results with other notable algorithms in the literature. Furthermore, we apply our algorithm for removing clicks from audio signals. Simulation results show that our algorithms are simple and fast, and it outperforms other state-of-the-art methods in terms of reconstruction quality and/or complexity.
doi_str_mv 10.1109/TCSVT.2020.2969563
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2020_2969563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8970271</ieee_id><sourcerecordid>2477255855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5c3ce817d654d8a8e55f397df00cf63c3dab083d508502ce4d967d09e16c48623</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt_QC8Bz1snyWaTHEuxtlAVbPUaYpKtW7rNmmwL_nt3bfH0Hsx7w8yH0C2BESGgHlaT5cdqRIHCiKpC8YKdoQHhXGaUAj_vPHCSSUr4JbpKaQNAcpmLAZqN8dSkFs9bH01bHTx-9u1XcLgMEb_5Ohyq3RrP62a_Tf30JVTJ42kMNV42JnZ-Wa13Zpuu0UXZib856RC9Tx9Xk1m2eH2aT8aLzFLF24xbZr0kwhU8d9JIz3nJlHAlgC0LZpkznyCZ4yA5UOtzpwrhQHlS2FwWlA3R_XFvE8P33qdWb8I-9hdomgtBu58571L0mLIxpBR9qZtY1Sb-aAK6J6b_iOmemD4R60p3x1Llvf8vSCWACsJ-AXOxZns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477255855</pqid></control><display><type>article</type><title>A Fast Iterative Method for Removing Impulsive Noise From Sparse Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Sadrizadeh, Sahar ; Zarmehi, Nematollah ; Kangarshahi, Ehsan Asadi ; Abin, Hamidreza ; Marvasti, Farokh</creator><creatorcontrib>Sadrizadeh, Sahar ; Zarmehi, Nematollah ; Kangarshahi, Ehsan Asadi ; Abin, Hamidreza ; Marvasti, Farokh</creatorcontrib><description>In this paper, we propose a new method to reconstruct a signal corrupted by noise where both signal and noise are sparse but in different domains. The main contribution of our algorithm is its low complexity; it has much lower run-time than most other algorithms. The reconstruction quality of our algorithm is both objectively (in terms of PSNR and SSIM) and subjectively better or comparable to other state-of-the-art algorithms. We provide a cost function for our problem, present an iterative method to find its local minimum, and provide the analysis of the algorithm. As an application of this problem, we apply our algorithm for Salt-and-Pepper noise (SPN) and Random-Valued Impulsive Noise (RVIN) removal from images and compare our results with other notable algorithms in the literature. Furthermore, we apply our algorithm for removing clicks from audio signals. Simulation results show that our algorithms are simple and fast, and it outperforms other state-of-the-art methods in terms of reconstruction quality and/or complexity.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2020.2969563</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive thresholding ; Algorithms ; Audio signals ; Complexity ; Cost function ; Discrete cosine transforms ; image denoising ; Image reconstruction ; impulsive noise ; iterative method ; Iterative methods ; Mathematical model ; Noise ; Noise measurement ; Reconstruction ; sparse signal</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2021-01, Vol.31 (1), p.38-48</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5c3ce817d654d8a8e55f397df00cf63c3dab083d508502ce4d967d09e16c48623</citedby><cites>FETCH-LOGICAL-c295t-5c3ce817d654d8a8e55f397df00cf63c3dab083d508502ce4d967d09e16c48623</cites><orcidid>0000-0002-1890-3377 ; 0000-0002-9208-2941 ; 0000-0002-4635-8986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8970271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8970271$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sadrizadeh, Sahar</creatorcontrib><creatorcontrib>Zarmehi, Nematollah</creatorcontrib><creatorcontrib>Kangarshahi, Ehsan Asadi</creatorcontrib><creatorcontrib>Abin, Hamidreza</creatorcontrib><creatorcontrib>Marvasti, Farokh</creatorcontrib><title>A Fast Iterative Method for Removing Impulsive Noise From Sparse Signals</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we propose a new method to reconstruct a signal corrupted by noise where both signal and noise are sparse but in different domains. The main contribution of our algorithm is its low complexity; it has much lower run-time than most other algorithms. The reconstruction quality of our algorithm is both objectively (in terms of PSNR and SSIM) and subjectively better or comparable to other state-of-the-art algorithms. We provide a cost function for our problem, present an iterative method to find its local minimum, and provide the analysis of the algorithm. As an application of this problem, we apply our algorithm for Salt-and-Pepper noise (SPN) and Random-Valued Impulsive Noise (RVIN) removal from images and compare our results with other notable algorithms in the literature. Furthermore, we apply our algorithm for removing clicks from audio signals. Simulation results show that our algorithms are simple and fast, and it outperforms other state-of-the-art methods in terms of reconstruction quality and/or complexity.</description><subject>Adaptive thresholding</subject><subject>Algorithms</subject><subject>Audio signals</subject><subject>Complexity</subject><subject>Cost function</subject><subject>Discrete cosine transforms</subject><subject>image denoising</subject><subject>Image reconstruction</subject><subject>impulsive noise</subject><subject>iterative method</subject><subject>Iterative methods</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Reconstruction</subject><subject>sparse signal</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt_QC8Bz1snyWaTHEuxtlAVbPUaYpKtW7rNmmwL_nt3bfH0Hsx7w8yH0C2BESGgHlaT5cdqRIHCiKpC8YKdoQHhXGaUAj_vPHCSSUr4JbpKaQNAcpmLAZqN8dSkFs9bH01bHTx-9u1XcLgMEb_5Ohyq3RrP62a_Tf30JVTJ42kMNV42JnZ-Wa13Zpuu0UXZib856RC9Tx9Xk1m2eH2aT8aLzFLF24xbZr0kwhU8d9JIz3nJlHAlgC0LZpkznyCZ4yA5UOtzpwrhQHlS2FwWlA3R_XFvE8P33qdWb8I-9hdomgtBu58571L0mLIxpBR9qZtY1Sb-aAK6J6b_iOmemD4R60p3x1Llvf8vSCWACsJ-AXOxZns</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Sadrizadeh, Sahar</creator><creator>Zarmehi, Nematollah</creator><creator>Kangarshahi, Ehsan Asadi</creator><creator>Abin, Hamidreza</creator><creator>Marvasti, Farokh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1890-3377</orcidid><orcidid>https://orcid.org/0000-0002-9208-2941</orcidid><orcidid>https://orcid.org/0000-0002-4635-8986</orcidid></search><sort><creationdate>202101</creationdate><title>A Fast Iterative Method for Removing Impulsive Noise From Sparse Signals</title><author>Sadrizadeh, Sahar ; Zarmehi, Nematollah ; Kangarshahi, Ehsan Asadi ; Abin, Hamidreza ; Marvasti, Farokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5c3ce817d654d8a8e55f397df00cf63c3dab083d508502ce4d967d09e16c48623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive thresholding</topic><topic>Algorithms</topic><topic>Audio signals</topic><topic>Complexity</topic><topic>Cost function</topic><topic>Discrete cosine transforms</topic><topic>image denoising</topic><topic>Image reconstruction</topic><topic>impulsive noise</topic><topic>iterative method</topic><topic>Iterative methods</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Reconstruction</topic><topic>sparse signal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadrizadeh, Sahar</creatorcontrib><creatorcontrib>Zarmehi, Nematollah</creatorcontrib><creatorcontrib>Kangarshahi, Ehsan Asadi</creatorcontrib><creatorcontrib>Abin, Hamidreza</creatorcontrib><creatorcontrib>Marvasti, Farokh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadrizadeh, Sahar</au><au>Zarmehi, Nematollah</au><au>Kangarshahi, Ehsan Asadi</au><au>Abin, Hamidreza</au><au>Marvasti, Farokh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Iterative Method for Removing Impulsive Noise From Sparse Signals</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2021-01</date><risdate>2021</risdate><volume>31</volume><issue>1</issue><spage>38</spage><epage>48</epage><pages>38-48</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we propose a new method to reconstruct a signal corrupted by noise where both signal and noise are sparse but in different domains. The main contribution of our algorithm is its low complexity; it has much lower run-time than most other algorithms. The reconstruction quality of our algorithm is both objectively (in terms of PSNR and SSIM) and subjectively better or comparable to other state-of-the-art algorithms. We provide a cost function for our problem, present an iterative method to find its local minimum, and provide the analysis of the algorithm. As an application of this problem, we apply our algorithm for Salt-and-Pepper noise (SPN) and Random-Valued Impulsive Noise (RVIN) removal from images and compare our results with other notable algorithms in the literature. Furthermore, we apply our algorithm for removing clicks from audio signals. Simulation results show that our algorithms are simple and fast, and it outperforms other state-of-the-art methods in terms of reconstruction quality and/or complexity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2020.2969563</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1890-3377</orcidid><orcidid>https://orcid.org/0000-0002-9208-2941</orcidid><orcidid>https://orcid.org/0000-0002-4635-8986</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2021-01, Vol.31 (1), p.38-48
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2020_2969563
source IEEE Electronic Library (IEL)
subjects Adaptive thresholding
Algorithms
Audio signals
Complexity
Cost function
Discrete cosine transforms
image denoising
Image reconstruction
impulsive noise
iterative method
Iterative methods
Mathematical model
Noise
Noise measurement
Reconstruction
sparse signal
title A Fast Iterative Method for Removing Impulsive Noise From Sparse Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Iterative%20Method%20for%20Removing%20Impulsive%20Noise%20From%20Sparse%20Signals&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Sadrizadeh,%20Sahar&rft.date=2021-01&rft.volume=31&rft.issue=1&rft.spage=38&rft.epage=48&rft.pages=38-48&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2020.2969563&rft_dat=%3Cproquest_RIE%3E2477255855%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477255855&rft_id=info:pmid/&rft_ieee_id=8970271&rfr_iscdi=true