Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification
Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To faci...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2020-10, Vol.30 (10), p.3459-3471 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3471 |
---|---|
container_issue | 10 |
container_start_page | 3459 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 30 |
creator | Huang, Yan Xu, Jingsong Wu, Qiang Zhong, Yi Zhang, Peng Zhang, Zhaoxiang |
description | Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To facilitate the study of long-term re-ID, this paper introduces a large-scale re-ID dataset called "Celeb-reID" to the community. Unlike previous datasets, the same person can change clothes in the proposed Celeb-reID dataset. Images of Celeb-reID are acquired from the Internet using street snap-shots of celebrities. There is a total of 1,052 IDs with 34,186 images making Celeb-reID being the largest long-term re-ID dataset so far. To tackle the challenge of cloth changes, we propose to use vector-neuron (VN) capsules instead of the traditional scalar neurons (SN) to design our network. Compared with SN, one extra-dimensional information in VN can perceive cloth changes of the same person. We introduce a well-designed ReIDCaps network and integrate capsules to deal with the person re-ID task. Soft Embedding Attention (SEA) and Feature Sparse Representation (FSR) mechanisms are adopted in our network for performance boosting. Experiments are conducted on the proposed long-term re-ID dataset and two common short-term re-ID datasets. Comprehensive analyses are given to demonstrate the challenge exposed in our datasets. Experimental results show that our ReIDCaps can outperform existing state-of-the-art methods by a large margin in the long-term scenario. The new dataset and code will be released to facilitate future researches. |
doi_str_mv | 10.1109/TCSVT.2019.2948093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2019_2948093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8873614</ieee_id><sourcerecordid>2448453320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-1b05d5ddd94077436a4b1634f99f9d8aad888def5a5c903b88deac3b9e324e0b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFz8ZmVyoelSpANHSFZDnxpErVxsFOFv17UoJYzeveGc1B6JqSCaVE32Xz1TqbMEL1hGmhiOYnaESlVAljRJ72OZE0UYzKc3QR45YQKpRIR-jrAQ6-dnhV2J0N-BW64Ot7PHO-aat6g9dQtD4kQx_PbRO7HURc-oCXvt4kGYQ9focQ--kHJAsHdVuVVWHbyteX6Ky0uwhXf3GMPp8es_lLsnx7Xsxny6QQRLYJzYl00jmnBUlTwadW5HTKRal1qZ2y1imlHJTSykITnh8LW_BcA2cCSM7H6HbY2wT_3UFszdZ3oe5PGib6PyXnjPQqNqiK4GMMUJomVHsbDoYSc6RofimaI0XzR7E33QymCgD-DUqlfEoF_wHU7W6_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448453320</pqid></control><display><type>article</type><title>Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Yan ; Xu, Jingsong ; Wu, Qiang ; Zhong, Yi ; Zhang, Peng ; Zhang, Zhaoxiang</creator><creatorcontrib>Huang, Yan ; Xu, Jingsong ; Wu, Qiang ; Zhong, Yi ; Zhang, Peng ; Zhang, Zhaoxiang</creatorcontrib><description>Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To facilitate the study of long-term re-ID, this paper introduces a large-scale re-ID dataset called "Celeb-reID" to the community. Unlike previous datasets, the same person can change clothes in the proposed Celeb-reID dataset. Images of Celeb-reID are acquired from the Internet using street snap-shots of celebrities. There is a total of 1,052 IDs with 34,186 images making Celeb-reID being the largest long-term re-ID dataset so far. To tackle the challenge of cloth changes, we propose to use vector-neuron (VN) capsules instead of the traditional scalar neurons (SN) to design our network. Compared with SN, one extra-dimensional information in VN can perceive cloth changes of the same person. We introduce a well-designed ReIDCaps network and integrate capsules to deal with the person re-ID task. Soft Embedding Attention (SEA) and Feature Sparse Representation (FSR) mechanisms are adopted in our network for performance boosting. Experiments are conducted on the proposed long-term re-ID dataset and two common short-term re-ID datasets. Comprehensive analyses are given to demonstrate the challenge exposed in our datasets. Experimental results show that our ReIDCaps can outperform existing state-of-the-art methods by a large margin in the long-term scenario. The new dataset and code will be released to facilitate future researches.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2019.2948093</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Cloth ; cloth change ; Datasets ; Face ; Image acquisition ; Internet ; Lighting ; long-term scenario ; Neurons ; Person re-identification ; Security ; Surveillance ; vector-neuron capsules</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2020-10, Vol.30 (10), p.3459-3471</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-1b05d5ddd94077436a4b1634f99f9d8aad888def5a5c903b88deac3b9e324e0b3</citedby><cites>FETCH-LOGICAL-c405t-1b05d5ddd94077436a4b1634f99f9d8aad888def5a5c903b88deac3b9e324e0b3</cites><orcidid>0000-0002-9102-3616 ; 0000-0001-6794-7352 ; 0000-0003-2648-3875 ; 0000-0001-5641-2483 ; 0000-0002-1363-5318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8873614$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8873614$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Xu, Jingsong</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Zhong, Yi</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhang, Zhaoxiang</creatorcontrib><title>Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To facilitate the study of long-term re-ID, this paper introduces a large-scale re-ID dataset called "Celeb-reID" to the community. Unlike previous datasets, the same person can change clothes in the proposed Celeb-reID dataset. Images of Celeb-reID are acquired from the Internet using street snap-shots of celebrities. There is a total of 1,052 IDs with 34,186 images making Celeb-reID being the largest long-term re-ID dataset so far. To tackle the challenge of cloth changes, we propose to use vector-neuron (VN) capsules instead of the traditional scalar neurons (SN) to design our network. Compared with SN, one extra-dimensional information in VN can perceive cloth changes of the same person. We introduce a well-designed ReIDCaps network and integrate capsules to deal with the person re-ID task. Soft Embedding Attention (SEA) and Feature Sparse Representation (FSR) mechanisms are adopted in our network for performance boosting. Experiments are conducted on the proposed long-term re-ID dataset and two common short-term re-ID datasets. Comprehensive analyses are given to demonstrate the challenge exposed in our datasets. Experimental results show that our ReIDCaps can outperform existing state-of-the-art methods by a large margin in the long-term scenario. The new dataset and code will be released to facilitate future researches.</description><subject>Cameras</subject><subject>Cloth</subject><subject>cloth change</subject><subject>Datasets</subject><subject>Face</subject><subject>Image acquisition</subject><subject>Internet</subject><subject>Lighting</subject><subject>long-term scenario</subject><subject>Neurons</subject><subject>Person re-identification</subject><subject>Security</subject><subject>Surveillance</subject><subject>vector-neuron capsules</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFz8ZmVyoelSpANHSFZDnxpErVxsFOFv17UoJYzeveGc1B6JqSCaVE32Xz1TqbMEL1hGmhiOYnaESlVAljRJ72OZE0UYzKc3QR45YQKpRIR-jrAQ6-dnhV2J0N-BW64Ot7PHO-aat6g9dQtD4kQx_PbRO7HURc-oCXvt4kGYQ9focQ--kHJAsHdVuVVWHbyteX6Ky0uwhXf3GMPp8es_lLsnx7Xsxny6QQRLYJzYl00jmnBUlTwadW5HTKRal1qZ2y1imlHJTSykITnh8LW_BcA2cCSM7H6HbY2wT_3UFszdZ3oe5PGib6PyXnjPQqNqiK4GMMUJomVHsbDoYSc6RofimaI0XzR7E33QymCgD-DUqlfEoF_wHU7W6_</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Huang, Yan</creator><creator>Xu, Jingsong</creator><creator>Wu, Qiang</creator><creator>Zhong, Yi</creator><creator>Zhang, Peng</creator><creator>Zhang, Zhaoxiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9102-3616</orcidid><orcidid>https://orcid.org/0000-0001-6794-7352</orcidid><orcidid>https://orcid.org/0000-0003-2648-3875</orcidid><orcidid>https://orcid.org/0000-0001-5641-2483</orcidid><orcidid>https://orcid.org/0000-0002-1363-5318</orcidid></search><sort><creationdate>20201001</creationdate><title>Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification</title><author>Huang, Yan ; Xu, Jingsong ; Wu, Qiang ; Zhong, Yi ; Zhang, Peng ; Zhang, Zhaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-1b05d5ddd94077436a4b1634f99f9d8aad888def5a5c903b88deac3b9e324e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Cloth</topic><topic>cloth change</topic><topic>Datasets</topic><topic>Face</topic><topic>Image acquisition</topic><topic>Internet</topic><topic>Lighting</topic><topic>long-term scenario</topic><topic>Neurons</topic><topic>Person re-identification</topic><topic>Security</topic><topic>Surveillance</topic><topic>vector-neuron capsules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Xu, Jingsong</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Zhong, Yi</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhang, Zhaoxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Yan</au><au>Xu, Jingsong</au><au>Wu, Qiang</au><au>Zhong, Yi</au><au>Zhang, Peng</au><au>Zhang, Zhaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>10</issue><spage>3459</spage><epage>3471</epage><pages>3459-3471</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To facilitate the study of long-term re-ID, this paper introduces a large-scale re-ID dataset called "Celeb-reID" to the community. Unlike previous datasets, the same person can change clothes in the proposed Celeb-reID dataset. Images of Celeb-reID are acquired from the Internet using street snap-shots of celebrities. There is a total of 1,052 IDs with 34,186 images making Celeb-reID being the largest long-term re-ID dataset so far. To tackle the challenge of cloth changes, we propose to use vector-neuron (VN) capsules instead of the traditional scalar neurons (SN) to design our network. Compared with SN, one extra-dimensional information in VN can perceive cloth changes of the same person. We introduce a well-designed ReIDCaps network and integrate capsules to deal with the person re-ID task. Soft Embedding Attention (SEA) and Feature Sparse Representation (FSR) mechanisms are adopted in our network for performance boosting. Experiments are conducted on the proposed long-term re-ID dataset and two common short-term re-ID datasets. Comprehensive analyses are given to demonstrate the challenge exposed in our datasets. Experimental results show that our ReIDCaps can outperform existing state-of-the-art methods by a large margin in the long-term scenario. The new dataset and code will be released to facilitate future researches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2019.2948093</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9102-3616</orcidid><orcidid>https://orcid.org/0000-0001-6794-7352</orcidid><orcidid>https://orcid.org/0000-0003-2648-3875</orcidid><orcidid>https://orcid.org/0000-0001-5641-2483</orcidid><orcidid>https://orcid.org/0000-0002-1363-5318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2020-10, Vol.30 (10), p.3459-3471 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2019_2948093 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Cloth cloth change Datasets Face Image acquisition Internet Lighting long-term scenario Neurons Person re-identification Security Surveillance vector-neuron capsules |
title | Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Scalar%20Neuron:%20Adopting%20Vector-Neuron%20Capsules%20for%20Long-Term%20Person%20Re-Identification&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Huang,%20Yan&rft.date=2020-10-01&rft.volume=30&rft.issue=10&rft.spage=3459&rft.epage=3471&rft.pages=3459-3471&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2019.2948093&rft_dat=%3Cproquest_RIE%3E2448453320%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448453320&rft_id=info:pmid/&rft_ieee_id=8873614&rfr_iscdi=true |