Subspace Clustering Under Complex Noise

In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2019-04, Vol.29 (4), p.930-940
Hauptverfasser: Li, Baohua, Lu, Huchuan, Zhang, Ying, Lin, Zhouchen, Wu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue 4
container_start_page 930
container_title IEEE transactions on circuits and systems for video technology
container_volume 29
creator Li, Baohua
Lu, Huchuan
Zhang, Ying
Lin, Zhouchen
Wu, Wei
description In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be contaminated by a unimodal Gaussian noise, which is a popular setting in most current subspace clustering models. However, the realistic noise is much more complex than our assumptions. Besides, the coarse representation of the data-fidelity term may depress the clustering accuracy, which is often used to evaluate the models. To address this issue, we propose the mixture of Gaussian regression (MoG Regression) for subspace clustering. The MoG Regression seeks a valid way to model the unknown noise distribution, which approaches the real one as far as possible, so that the desired affinity matrix is better at characterizing the structure of data in the real world, and furthermore, improving the performance. Theoretically, the proposed model enjoys the grouping effect, which encourages the coefficients of highly correlated points are nearly equal. Drawing upon the ideal of the minimum message length, a model selection strategy is proposed to estimate the numbers of the Gaussian components that shows a way how to seek the number of Gaussian components besides determining it by empirical value. In addition, the asymptotic property of our model is investigated. The proposed model is evaluated on the challenging datasets. The experimental results show that the proposed MoG Regression model significantly outperforms several state-of-the-art subspace clustering methods.
doi_str_mv 10.1109/TCSVT.2018.2793359
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2018_2793359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8258994</ieee_id><sourcerecordid>2206608070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-bc5ec4b7f45471806d8ff365278d6875b3d8349ee0abfcaa6e6dc62e50c5e2df3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4CHjylzn7vHiX4BUUPTb0uyWZWUtom7jag_97UFk8zh_d5h3kIuaYwoxTsfVksPsoZA2pmTFvOpT0hEyqlyRkDeTruIGluGJXn5CKlFQAVRugJuVsMdeorj1mxHtIOY7v9zJbbBmNWdJt-jd_ZW9cmvCRnoVonvDrOKVk-PZbFSz5_f34tHua5Z1bu8tpL9KLWQUihqQHVmBC4kkybRhkta94YLiwiVHXwVaVQNV4xlDCCrAl8Sm4PvX3svgZMO7fqhrgdT7rxE6XAgIYxxQ4pH7uUIgbXx3ZTxR9Hwe2FuD8hbi_EHYWM0M0BahHxHzBMGmsF_wV6oVvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206608070</pqid></control><display><type>article</type><title>Subspace Clustering Under Complex Noise</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Baohua ; Lu, Huchuan ; Zhang, Ying ; Lin, Zhouchen ; Wu, Wei</creator><creatorcontrib>Li, Baohua ; Lu, Huchuan ; Zhang, Ying ; Lin, Zhouchen ; Wu, Wei</creatorcontrib><description>In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be contaminated by a unimodal Gaussian noise, which is a popular setting in most current subspace clustering models. However, the realistic noise is much more complex than our assumptions. Besides, the coarse representation of the data-fidelity term may depress the clustering accuracy, which is often used to evaluate the models. To address this issue, we propose the mixture of Gaussian regression (MoG Regression) for subspace clustering. The MoG Regression seeks a valid way to model the unknown noise distribution, which approaches the real one as far as possible, so that the desired affinity matrix is better at characterizing the structure of data in the real world, and furthermore, improving the performance. Theoretically, the proposed model enjoys the grouping effect, which encourages the coefficients of highly correlated points are nearly equal. Drawing upon the ideal of the minimum message length, a model selection strategy is proposed to estimate the numbers of the Gaussian components that shows a way how to seek the number of Gaussian components besides determining it by empirical value. In addition, the asymptotic property of our model is investigated. The proposed model is evaluated on the challenging datasets. The experimental results show that the proposed MoG Regression model significantly outperforms several state-of-the-art subspace clustering methods.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2018.2793359</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Asymptotic properties ; Clustering ; Clustering algorithms ; Clustering methods ; Computer vision ; expectation maximization ; Gaussian processes ; mixture of Gaussian regression ; Noise ; Pattern clustering ; Random noise ; Regression analysis ; Regression models ; Regularization ; Statistical analysis ; Subspace clustering ; Subspace methods ; Subspaces</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2019-04, Vol.29 (4), p.930-940</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-bc5ec4b7f45471806d8ff365278d6875b3d8349ee0abfcaa6e6dc62e50c5e2df3</citedby><cites>FETCH-LOGICAL-c295t-bc5ec4b7f45471806d8ff365278d6875b3d8349ee0abfcaa6e6dc62e50c5e2df3</cites><orcidid>0000-0003-1493-7569 ; 0000-0003-3162-1929 ; 0000-0002-3137-4086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8258994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8258994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Baohua</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Lin, Zhouchen</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><title>Subspace Clustering Under Complex Noise</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be contaminated by a unimodal Gaussian noise, which is a popular setting in most current subspace clustering models. However, the realistic noise is much more complex than our assumptions. Besides, the coarse representation of the data-fidelity term may depress the clustering accuracy, which is often used to evaluate the models. To address this issue, we propose the mixture of Gaussian regression (MoG Regression) for subspace clustering. The MoG Regression seeks a valid way to model the unknown noise distribution, which approaches the real one as far as possible, so that the desired affinity matrix is better at characterizing the structure of data in the real world, and furthermore, improving the performance. Theoretically, the proposed model enjoys the grouping effect, which encourages the coefficients of highly correlated points are nearly equal. Drawing upon the ideal of the minimum message length, a model selection strategy is proposed to estimate the numbers of the Gaussian components that shows a way how to seek the number of Gaussian components besides determining it by empirical value. In addition, the asymptotic property of our model is investigated. The proposed model is evaluated on the challenging datasets. The experimental results show that the proposed MoG Regression model significantly outperforms several state-of-the-art subspace clustering methods.</description><subject>Accuracy</subject><subject>Asymptotic properties</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Computer vision</subject><subject>expectation maximization</subject><subject>Gaussian processes</subject><subject>mixture of Gaussian regression</subject><subject>Noise</subject><subject>Pattern clustering</subject><subject>Random noise</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Regularization</subject><subject>Statistical analysis</subject><subject>Subspace clustering</subject><subject>Subspace methods</subject><subject>Subspaces</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4CHjylzn7vHiX4BUUPTb0uyWZWUtom7jag_97UFk8zh_d5h3kIuaYwoxTsfVksPsoZA2pmTFvOpT0hEyqlyRkDeTruIGluGJXn5CKlFQAVRugJuVsMdeorj1mxHtIOY7v9zJbbBmNWdJt-jd_ZW9cmvCRnoVonvDrOKVk-PZbFSz5_f34tHua5Z1bu8tpL9KLWQUihqQHVmBC4kkybRhkta94YLiwiVHXwVaVQNV4xlDCCrAl8Sm4PvX3svgZMO7fqhrgdT7rxE6XAgIYxxQ4pH7uUIgbXx3ZTxR9Hwe2FuD8hbi_EHYWM0M0BahHxHzBMGmsF_wV6oVvA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Li, Baohua</creator><creator>Lu, Huchuan</creator><creator>Zhang, Ying</creator><creator>Lin, Zhouchen</creator><creator>Wu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1493-7569</orcidid><orcidid>https://orcid.org/0000-0003-3162-1929</orcidid><orcidid>https://orcid.org/0000-0002-3137-4086</orcidid></search><sort><creationdate>20190401</creationdate><title>Subspace Clustering Under Complex Noise</title><author>Li, Baohua ; Lu, Huchuan ; Zhang, Ying ; Lin, Zhouchen ; Wu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-bc5ec4b7f45471806d8ff365278d6875b3d8349ee0abfcaa6e6dc62e50c5e2df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Asymptotic properties</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Computer vision</topic><topic>expectation maximization</topic><topic>Gaussian processes</topic><topic>mixture of Gaussian regression</topic><topic>Noise</topic><topic>Pattern clustering</topic><topic>Random noise</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Regularization</topic><topic>Statistical analysis</topic><topic>Subspace clustering</topic><topic>Subspace methods</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Baohua</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Lin, Zhouchen</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Baohua</au><au>Lu, Huchuan</au><au>Zhang, Ying</au><au>Lin, Zhouchen</au><au>Wu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace Clustering Under Complex Noise</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><spage>930</spage><epage>940</epage><pages>930-940</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be contaminated by a unimodal Gaussian noise, which is a popular setting in most current subspace clustering models. However, the realistic noise is much more complex than our assumptions. Besides, the coarse representation of the data-fidelity term may depress the clustering accuracy, which is often used to evaluate the models. To address this issue, we propose the mixture of Gaussian regression (MoG Regression) for subspace clustering. The MoG Regression seeks a valid way to model the unknown noise distribution, which approaches the real one as far as possible, so that the desired affinity matrix is better at characterizing the structure of data in the real world, and furthermore, improving the performance. Theoretically, the proposed model enjoys the grouping effect, which encourages the coefficients of highly correlated points are nearly equal. Drawing upon the ideal of the minimum message length, a model selection strategy is proposed to estimate the numbers of the Gaussian components that shows a way how to seek the number of Gaussian components besides determining it by empirical value. In addition, the asymptotic property of our model is investigated. The proposed model is evaluated on the challenging datasets. The experimental results show that the proposed MoG Regression model significantly outperforms several state-of-the-art subspace clustering methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2018.2793359</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1493-7569</orcidid><orcidid>https://orcid.org/0000-0003-3162-1929</orcidid><orcidid>https://orcid.org/0000-0002-3137-4086</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2019-04, Vol.29 (4), p.930-940
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2018_2793359
source IEEE Electronic Library (IEL)
subjects Accuracy
Asymptotic properties
Clustering
Clustering algorithms
Clustering methods
Computer vision
expectation maximization
Gaussian processes
mixture of Gaussian regression
Noise
Pattern clustering
Random noise
Regression analysis
Regression models
Regularization
Statistical analysis
Subspace clustering
Subspace methods
Subspaces
title Subspace Clustering Under Complex Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace%20Clustering%20Under%20Complex%20Noise&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Li,%20Baohua&rft.date=2019-04-01&rft.volume=29&rft.issue=4&rft.spage=930&rft.epage=940&rft.pages=930-940&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2018.2793359&rft_dat=%3Cproquest_RIE%3E2206608070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206608070&rft_id=info:pmid/&rft_ieee_id=8258994&rfr_iscdi=true