Subspace Clustering Under Complex Noise
In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be cont...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2019-04, Vol.29 (4), p.930-940 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 940 |
---|---|
container_issue | 4 |
container_start_page | 930 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 29 |
creator | Li, Baohua Lu, Huchuan Zhang, Ying Lin, Zhouchen Wu, Wei |
description | In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be contaminated by a unimodal Gaussian noise, which is a popular setting in most current subspace clustering models. However, the realistic noise is much more complex than our assumptions. Besides, the coarse representation of the data-fidelity term may depress the clustering accuracy, which is often used to evaluate the models. To address this issue, we propose the mixture of Gaussian regression (MoG Regression) for subspace clustering. The MoG Regression seeks a valid way to model the unknown noise distribution, which approaches the real one as far as possible, so that the desired affinity matrix is better at characterizing the structure of data in the real world, and furthermore, improving the performance. Theoretically, the proposed model enjoys the grouping effect, which encourages the coefficients of highly correlated points are nearly equal. Drawing upon the ideal of the minimum message length, a model selection strategy is proposed to estimate the numbers of the Gaussian components that shows a way how to seek the number of Gaussian components besides determining it by empirical value. In addition, the asymptotic property of our model is investigated. The proposed model is evaluated on the challenging datasets. The experimental results show that the proposed MoG Regression model significantly outperforms several state-of-the-art subspace clustering methods. |
doi_str_mv | 10.1109/TCSVT.2018.2793359 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2018_2793359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8258994</ieee_id><sourcerecordid>2206608070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-bc5ec4b7f45471806d8ff365278d6875b3d8349ee0abfcaa6e6dc62e50c5e2df3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4CHjylzn7vHiX4BUUPTb0uyWZWUtom7jag_97UFk8zh_d5h3kIuaYwoxTsfVksPsoZA2pmTFvOpT0hEyqlyRkDeTruIGluGJXn5CKlFQAVRugJuVsMdeorj1mxHtIOY7v9zJbbBmNWdJt-jd_ZW9cmvCRnoVonvDrOKVk-PZbFSz5_f34tHua5Z1bu8tpL9KLWQUihqQHVmBC4kkybRhkta94YLiwiVHXwVaVQNV4xlDCCrAl8Sm4PvX3svgZMO7fqhrgdT7rxE6XAgIYxxQ4pH7uUIgbXx3ZTxR9Hwe2FuD8hbi_EHYWM0M0BahHxHzBMGmsF_wV6oVvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206608070</pqid></control><display><type>article</type><title>Subspace Clustering Under Complex Noise</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Baohua ; Lu, Huchuan ; Zhang, Ying ; Lin, Zhouchen ; Wu, Wei</creator><creatorcontrib>Li, Baohua ; Lu, Huchuan ; Zhang, Ying ; Lin, Zhouchen ; Wu, Wei</creatorcontrib><description>In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be contaminated by a unimodal Gaussian noise, which is a popular setting in most current subspace clustering models. However, the realistic noise is much more complex than our assumptions. Besides, the coarse representation of the data-fidelity term may depress the clustering accuracy, which is often used to evaluate the models. To address this issue, we propose the mixture of Gaussian regression (MoG Regression) for subspace clustering. The MoG Regression seeks a valid way to model the unknown noise distribution, which approaches the real one as far as possible, so that the desired affinity matrix is better at characterizing the structure of data in the real world, and furthermore, improving the performance. Theoretically, the proposed model enjoys the grouping effect, which encourages the coefficients of highly correlated points are nearly equal. Drawing upon the ideal of the minimum message length, a model selection strategy is proposed to estimate the numbers of the Gaussian components that shows a way how to seek the number of Gaussian components besides determining it by empirical value. In addition, the asymptotic property of our model is investigated. The proposed model is evaluated on the challenging datasets. The experimental results show that the proposed MoG Regression model significantly outperforms several state-of-the-art subspace clustering methods.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2018.2793359</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Asymptotic properties ; Clustering ; Clustering algorithms ; Clustering methods ; Computer vision ; expectation maximization ; Gaussian processes ; mixture of Gaussian regression ; Noise ; Pattern clustering ; Random noise ; Regression analysis ; Regression models ; Regularization ; Statistical analysis ; Subspace clustering ; Subspace methods ; Subspaces</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2019-04, Vol.29 (4), p.930-940</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-bc5ec4b7f45471806d8ff365278d6875b3d8349ee0abfcaa6e6dc62e50c5e2df3</citedby><cites>FETCH-LOGICAL-c295t-bc5ec4b7f45471806d8ff365278d6875b3d8349ee0abfcaa6e6dc62e50c5e2df3</cites><orcidid>0000-0003-1493-7569 ; 0000-0003-3162-1929 ; 0000-0002-3137-4086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8258994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8258994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Baohua</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Lin, Zhouchen</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><title>Subspace Clustering Under Complex Noise</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be contaminated by a unimodal Gaussian noise, which is a popular setting in most current subspace clustering models. However, the realistic noise is much more complex than our assumptions. Besides, the coarse representation of the data-fidelity term may depress the clustering accuracy, which is often used to evaluate the models. To address this issue, we propose the mixture of Gaussian regression (MoG Regression) for subspace clustering. The MoG Regression seeks a valid way to model the unknown noise distribution, which approaches the real one as far as possible, so that the desired affinity matrix is better at characterizing the structure of data in the real world, and furthermore, improving the performance. Theoretically, the proposed model enjoys the grouping effect, which encourages the coefficients of highly correlated points are nearly equal. Drawing upon the ideal of the minimum message length, a model selection strategy is proposed to estimate the numbers of the Gaussian components that shows a way how to seek the number of Gaussian components besides determining it by empirical value. In addition, the asymptotic property of our model is investigated. The proposed model is evaluated on the challenging datasets. The experimental results show that the proposed MoG Regression model significantly outperforms several state-of-the-art subspace clustering methods.</description><subject>Accuracy</subject><subject>Asymptotic properties</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Computer vision</subject><subject>expectation maximization</subject><subject>Gaussian processes</subject><subject>mixture of Gaussian regression</subject><subject>Noise</subject><subject>Pattern clustering</subject><subject>Random noise</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Regularization</subject><subject>Statistical analysis</subject><subject>Subspace clustering</subject><subject>Subspace methods</subject><subject>Subspaces</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4CHjylzn7vHiX4BUUPTb0uyWZWUtom7jag_97UFk8zh_d5h3kIuaYwoxTsfVksPsoZA2pmTFvOpT0hEyqlyRkDeTruIGluGJXn5CKlFQAVRugJuVsMdeorj1mxHtIOY7v9zJbbBmNWdJt-jd_ZW9cmvCRnoVonvDrOKVk-PZbFSz5_f34tHua5Z1bu8tpL9KLWQUihqQHVmBC4kkybRhkta94YLiwiVHXwVaVQNV4xlDCCrAl8Sm4PvX3svgZMO7fqhrgdT7rxE6XAgIYxxQ4pH7uUIgbXx3ZTxR9Hwe2FuD8hbi_EHYWM0M0BahHxHzBMGmsF_wV6oVvA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Li, Baohua</creator><creator>Lu, Huchuan</creator><creator>Zhang, Ying</creator><creator>Lin, Zhouchen</creator><creator>Wu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1493-7569</orcidid><orcidid>https://orcid.org/0000-0003-3162-1929</orcidid><orcidid>https://orcid.org/0000-0002-3137-4086</orcidid></search><sort><creationdate>20190401</creationdate><title>Subspace Clustering Under Complex Noise</title><author>Li, Baohua ; Lu, Huchuan ; Zhang, Ying ; Lin, Zhouchen ; Wu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-bc5ec4b7f45471806d8ff365278d6875b3d8349ee0abfcaa6e6dc62e50c5e2df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Asymptotic properties</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Computer vision</topic><topic>expectation maximization</topic><topic>Gaussian processes</topic><topic>mixture of Gaussian regression</topic><topic>Noise</topic><topic>Pattern clustering</topic><topic>Random noise</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Regularization</topic><topic>Statistical analysis</topic><topic>Subspace clustering</topic><topic>Subspace methods</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Baohua</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Lin, Zhouchen</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Baohua</au><au>Lu, Huchuan</au><au>Zhang, Ying</au><au>Lin, Zhouchen</au><au>Wu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace Clustering Under Complex Noise</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><spage>930</spage><epage>940</epage><pages>930-940</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we study the subspace clustering problem under complex noise. A wide class of reconstruction-based methods model the subspace clustering problem by combining a quadratic data-fidelity term and a regularization term. In a statistical framework, the data-fidelity term assumes to be contaminated by a unimodal Gaussian noise, which is a popular setting in most current subspace clustering models. However, the realistic noise is much more complex than our assumptions. Besides, the coarse representation of the data-fidelity term may depress the clustering accuracy, which is often used to evaluate the models. To address this issue, we propose the mixture of Gaussian regression (MoG Regression) for subspace clustering. The MoG Regression seeks a valid way to model the unknown noise distribution, which approaches the real one as far as possible, so that the desired affinity matrix is better at characterizing the structure of data in the real world, and furthermore, improving the performance. Theoretically, the proposed model enjoys the grouping effect, which encourages the coefficients of highly correlated points are nearly equal. Drawing upon the ideal of the minimum message length, a model selection strategy is proposed to estimate the numbers of the Gaussian components that shows a way how to seek the number of Gaussian components besides determining it by empirical value. In addition, the asymptotic property of our model is investigated. The proposed model is evaluated on the challenging datasets. The experimental results show that the proposed MoG Regression model significantly outperforms several state-of-the-art subspace clustering methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2018.2793359</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1493-7569</orcidid><orcidid>https://orcid.org/0000-0003-3162-1929</orcidid><orcidid>https://orcid.org/0000-0002-3137-4086</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2019-04, Vol.29 (4), p.930-940 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2018_2793359 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Asymptotic properties Clustering Clustering algorithms Clustering methods Computer vision expectation maximization Gaussian processes mixture of Gaussian regression Noise Pattern clustering Random noise Regression analysis Regression models Regularization Statistical analysis Subspace clustering Subspace methods Subspaces |
title | Subspace Clustering Under Complex Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace%20Clustering%20Under%20Complex%20Noise&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Li,%20Baohua&rft.date=2019-04-01&rft.volume=29&rft.issue=4&rft.spage=930&rft.epage=940&rft.pages=930-940&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2018.2793359&rft_dat=%3Cproquest_RIE%3E2206608070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206608070&rft_id=info:pmid/&rft_ieee_id=8258994&rfr_iscdi=true |