Modularity-Based Image Segmentation

To address the problem of segmenting an image into sizeable homogeneous regions, this paper proposes an efficient agglomerative algorithm on the basis of modularity optimization. Given an oversegmented image that consists of many small regions, our algorithm automatically merges those neighboring re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2015-04, Vol.25 (4), p.570-581
Hauptverfasser: Shijie Li, Wu, Dapeng Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 581
container_issue 4
container_start_page 570
container_title IEEE transactions on circuits and systems for video technology
container_volume 25
creator Shijie Li
Wu, Dapeng Oliver
description To address the problem of segmenting an image into sizeable homogeneous regions, this paper proposes an efficient agglomerative algorithm on the basis of modularity optimization. Given an oversegmented image that consists of many small regions, our algorithm automatically merges those neighboring regions that produce the largest increase in modularity index. When the modularity of the segmented image is maximized, the algorithm stops merging and produces the final segmented image. To preserve the repetitive patterns in a homogeneous region, we propose a feature on the basis of the histogram of states of image gradients and use it together with the color feature to characterize the similarity of two regions. By constructing the similarity matrix in an adaptive manner, the oversegmentation problem can be effectively avoided. Our algorithm is tested on the publicly available Berkeley Segmentation Data Set as well as the semantic segmentation data set and compared with other popular algorithms. Experimental results have demonstrated that our algorithm produces sizable segmentation, preserves repetitive patterns with appealing time complexity, and achieves object-level segmentation to some extent.
doi_str_mv 10.1109/TCSVT.2014.2360028
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2014_2360028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6909035</ieee_id><sourcerecordid>10_1109_TCSVT_2014_2360028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-bf1982f7b7f72876fdb3f40d90b10c2205688183531f9b76e664ac9ec4106c133</originalsourceid><addsrcrecordid>eNo9jz1PwzAQhi0EEqXwB2CpxOxwZ8dfI0QUKhUxNLBajmNXQU2D4jD035PQiuluuOfe9yHkFiFDBPNQFpvPMmOAeca4BGD6jMxQCE0ZA3E-7iCQaobiklyl9AXjpc7VjNy_dfXPzvXNcKBPLoV6sWrdNiw2YduG_eCGpttfk4vodincnOacfCyfy-KVrt9fVsXjmnom1UCriEazqCoVFdNKxrriMYfaQIXgpx5Sa9RccIymUjJImTtvgs8RpEfO54Qd__q-S6kP0X73Tev6g0Wwk6b907STpj1pjtDdEWpCCP-ANGBgTPoFY4xM8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modularity-Based Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Shijie Li ; Wu, Dapeng Oliver</creator><creatorcontrib>Shijie Li ; Wu, Dapeng Oliver</creatorcontrib><description>To address the problem of segmenting an image into sizeable homogeneous regions, this paper proposes an efficient agglomerative algorithm on the basis of modularity optimization. Given an oversegmented image that consists of many small regions, our algorithm automatically merges those neighboring regions that produce the largest increase in modularity index. When the modularity of the segmented image is maximized, the algorithm stops merging and produces the final segmented image. To preserve the repetitive patterns in a homogeneous region, we propose a feature on the basis of the histogram of states of image gradients and use it together with the color feature to characterize the similarity of two regions. By constructing the similarity matrix in an adaptive manner, the oversegmentation problem can be effectively avoided. Our algorithm is tested on the publicly available Berkeley Segmentation Data Set as well as the semantic segmentation data set and compared with other popular algorithms. Experimental results have demonstrated that our algorithm produces sizable segmentation, preserves repetitive patterns with appealing time complexity, and achieves object-level segmentation to some extent.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2014.2360028</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>clustering ; Clustering algorithms ; Communities ; community detection ; Image color analysis ; Image segmentation ; Merging ; modularity ; Optimization ; Time complexity</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2015-04, Vol.25 (4), p.570-581</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-bf1982f7b7f72876fdb3f40d90b10c2205688183531f9b76e664ac9ec4106c133</citedby><cites>FETCH-LOGICAL-c267t-bf1982f7b7f72876fdb3f40d90b10c2205688183531f9b76e664ac9ec4106c133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6909035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6909035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shijie Li</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><title>Modularity-Based Image Segmentation</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>To address the problem of segmenting an image into sizeable homogeneous regions, this paper proposes an efficient agglomerative algorithm on the basis of modularity optimization. Given an oversegmented image that consists of many small regions, our algorithm automatically merges those neighboring regions that produce the largest increase in modularity index. When the modularity of the segmented image is maximized, the algorithm stops merging and produces the final segmented image. To preserve the repetitive patterns in a homogeneous region, we propose a feature on the basis of the histogram of states of image gradients and use it together with the color feature to characterize the similarity of two regions. By constructing the similarity matrix in an adaptive manner, the oversegmentation problem can be effectively avoided. Our algorithm is tested on the publicly available Berkeley Segmentation Data Set as well as the semantic segmentation data set and compared with other popular algorithms. Experimental results have demonstrated that our algorithm produces sizable segmentation, preserves repetitive patterns with appealing time complexity, and achieves object-level segmentation to some extent.</description><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Communities</subject><subject>community detection</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Merging</subject><subject>modularity</subject><subject>Optimization</subject><subject>Time complexity</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9jz1PwzAQhi0EEqXwB2CpxOxwZ8dfI0QUKhUxNLBajmNXQU2D4jD035PQiuluuOfe9yHkFiFDBPNQFpvPMmOAeca4BGD6jMxQCE0ZA3E-7iCQaobiklyl9AXjpc7VjNy_dfXPzvXNcKBPLoV6sWrdNiw2YduG_eCGpttfk4vodincnOacfCyfy-KVrt9fVsXjmnom1UCriEazqCoVFdNKxrriMYfaQIXgpx5Sa9RccIymUjJImTtvgs8RpEfO54Qd__q-S6kP0X73Tev6g0Wwk6b907STpj1pjtDdEWpCCP-ANGBgTPoFY4xM8g</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Shijie Li</creator><creator>Wu, Dapeng Oliver</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201504</creationdate><title>Modularity-Based Image Segmentation</title><author>Shijie Li ; Wu, Dapeng Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-bf1982f7b7f72876fdb3f40d90b10c2205688183531f9b76e664ac9ec4106c133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Communities</topic><topic>community detection</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Merging</topic><topic>modularity</topic><topic>Optimization</topic><topic>Time complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shijie Li</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shijie Li</au><au>Wu, Dapeng Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modularity-Based Image Segmentation</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2015-04</date><risdate>2015</risdate><volume>25</volume><issue>4</issue><spage>570</spage><epage>581</epage><pages>570-581</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>To address the problem of segmenting an image into sizeable homogeneous regions, this paper proposes an efficient agglomerative algorithm on the basis of modularity optimization. Given an oversegmented image that consists of many small regions, our algorithm automatically merges those neighboring regions that produce the largest increase in modularity index. When the modularity of the segmented image is maximized, the algorithm stops merging and produces the final segmented image. To preserve the repetitive patterns in a homogeneous region, we propose a feature on the basis of the histogram of states of image gradients and use it together with the color feature to characterize the similarity of two regions. By constructing the similarity matrix in an adaptive manner, the oversegmentation problem can be effectively avoided. Our algorithm is tested on the publicly available Berkeley Segmentation Data Set as well as the semantic segmentation data set and compared with other popular algorithms. Experimental results have demonstrated that our algorithm produces sizable segmentation, preserves repetitive patterns with appealing time complexity, and achieves object-level segmentation to some extent.</abstract><pub>IEEE</pub><doi>10.1109/TCSVT.2014.2360028</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2015-04, Vol.25 (4), p.570-581
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2014_2360028
source IEEE Electronic Library (IEL)
subjects clustering
Clustering algorithms
Communities
community detection
Image color analysis
Image segmentation
Merging
modularity
Optimization
Time complexity
title Modularity-Based Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modularity-Based%20Image%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Shijie%20Li&rft.date=2015-04&rft.volume=25&rft.issue=4&rft.spage=570&rft.epage=581&rft.pages=570-581&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2014.2360028&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSVT_2014_2360028%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6909035&rfr_iscdi=true