Robust Contour Tracking by Combining Region and Boundary Information

This paper presents a new object tracking model that systematically combines region and boundary features. Besides traditional region features (intensity/color and texture), we design a new boundary-based object detector for accurate and robust tracking in low-contrast and complex scenes, which usua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2011-12, Vol.21 (12), p.1784-1794
Hauptverfasser: Ling Cai, Lei He, Yamashita, T., Yiren Xu, Yuming Zhao, Xin Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1794
container_issue 12
container_start_page 1784
container_title IEEE transactions on circuits and systems for video technology
container_volume 21
creator Ling Cai
Lei He
Yamashita, T.
Yiren Xu
Yuming Zhao
Xin Yang
description This paper presents a new object tracking model that systematically combines region and boundary features. Besides traditional region features (intensity/color and texture), we design a new boundary-based object detector for accurate and robust tracking in low-contrast and complex scenes, which usually appear in the commonly used monochrome surveillance systems. In our model, region feature-based energy terms are characterized by probability models, and boundary feature terms include edge and frame difference. With a new weighting term, a novel energy functional is proposed to systematically combine the region and boundary-based components, and it is minimized by a level set evolution equation. For an efficient computational cost, motion information is utilized for new frame level set initialization. Compared with region feature-based models, the experimental results show that the proposed model significantly improves the performance under different circumstances, especially for objects in low-contrast and complex environments.
doi_str_mv 10.1109/TCSVT.2011.2133550
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2011_2133550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5739509</ieee_id><sourcerecordid>1010895298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f9870d34622eb408e84a4635ebdb7db2f52098ac12b48bed72633f1d7e6cd8343</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRSMEEqXwA7CJkJDYpIxfib2E8KpUCakEtpGdOFVKYhc7WfTvcWnFgtW8zlzN3Ci6RDBDCMRdkb9_FjMMCM0wIoQxOIomiDGeYAzsOOTAUMIxYqfRmfdrAEQ5zSbR49Kq0Q9xbs1gRxcXTlZfrVnFaht6vWrNrljqVWtNLE0dP9jR1NJt47lprOvlEAbn0UkjO68vDnEafTw_Fflrsnh7mef3i6QiLBuSRvAMakJTjLWiwDWnkqaEaVWrrFa4YRgElxXCinKl6wynhDSoznRa1ZxQMo1u97obZ79H7Yeyb32lu04abUdfIkDABcOCB_T6H7oO75lwXSkQJcAIwQHCe6hy1nunm3Lj2j48F5TKna_lr6_lztfy4GtYujkoS1_JrnHSVK3_28SMQgZEBO5qz7Va678xy4hgIMgPi4J_1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914305332</pqid></control><display><type>article</type><title>Robust Contour Tracking by Combining Region and Boundary Information</title><source>IEEE Xplore (Online service)</source><creator>Ling Cai ; Lei He ; Yamashita, T. ; Yiren Xu ; Yuming Zhao ; Xin Yang</creator><creatorcontrib>Ling Cai ; Lei He ; Yamashita, T. ; Yiren Xu ; Yuming Zhao ; Xin Yang</creatorcontrib><description>This paper presents a new object tracking model that systematically combines region and boundary features. Besides traditional region features (intensity/color and texture), we design a new boundary-based object detector for accurate and robust tracking in low-contrast and complex scenes, which usually appear in the commonly used monochrome surveillance systems. In our model, region feature-based energy terms are characterized by probability models, and boundary feature terms include edge and frame difference. With a new weighting term, a novel energy functional is proposed to systematically combine the region and boundary-based components, and it is minimized by a level set evolution equation. For an efficient computational cost, motion information is utilized for new frame level set initialization. Compared with region feature-based models, the experimental results show that the proposed model significantly improves the performance under different circumstances, especially for objects in low-contrast and complex environments.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2011.2133550</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Bayesian model ; Boundaries ; Computational efficiency ; contour evolution ; Detection, estimation, filtering, equalization, prediction ; Detectors ; energy functional ; Exact sciences and technology ; Feature extraction ; feature fusion ; Frames ; General equipment and techniques ; Image color analysis ; Information, signal and communications theory ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; kernel density estimation ; Level set ; Pattern recognition ; Physics ; Robustness ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Signal and communications theory ; Signal processing ; Signal, noise ; Studies ; Surface layer ; Surveillance systems ; Telecommunications and information theory ; Texture ; Tracking</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2011-12, Vol.21 (12), p.1784-1794</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-f9870d34622eb408e84a4635ebdb7db2f52098ac12b48bed72633f1d7e6cd8343</citedby><cites>FETCH-LOGICAL-c357t-f9870d34622eb408e84a4635ebdb7db2f52098ac12b48bed72633f1d7e6cd8343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5739509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5739509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25407039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling Cai</creatorcontrib><creatorcontrib>Lei He</creatorcontrib><creatorcontrib>Yamashita, T.</creatorcontrib><creatorcontrib>Yiren Xu</creatorcontrib><creatorcontrib>Yuming Zhao</creatorcontrib><creatorcontrib>Xin Yang</creatorcontrib><title>Robust Contour Tracking by Combining Region and Boundary Information</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>This paper presents a new object tracking model that systematically combines region and boundary features. Besides traditional region features (intensity/color and texture), we design a new boundary-based object detector for accurate and robust tracking in low-contrast and complex scenes, which usually appear in the commonly used monochrome surveillance systems. In our model, region feature-based energy terms are characterized by probability models, and boundary feature terms include edge and frame difference. With a new weighting term, a novel energy functional is proposed to systematically combine the region and boundary-based components, and it is minimized by a level set evolution equation. For an efficient computational cost, motion information is utilized for new frame level set initialization. Compared with region feature-based models, the experimental results show that the proposed model significantly improves the performance under different circumstances, especially for objects in low-contrast and complex environments.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Bayesian model</subject><subject>Boundaries</subject><subject>Computational efficiency</subject><subject>contour evolution</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>energy functional</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Frames</subject><subject>General equipment and techniques</subject><subject>Image color analysis</subject><subject>Information, signal and communications theory</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>kernel density estimation</subject><subject>Level set</subject><subject>Pattern recognition</subject><subject>Physics</subject><subject>Robustness</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Surveillance systems</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><subject>Tracking</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRSMEEqXwA7CJkJDYpIxfib2E8KpUCakEtpGdOFVKYhc7WfTvcWnFgtW8zlzN3Ci6RDBDCMRdkb9_FjMMCM0wIoQxOIomiDGeYAzsOOTAUMIxYqfRmfdrAEQ5zSbR49Kq0Q9xbs1gRxcXTlZfrVnFaht6vWrNrljqVWtNLE0dP9jR1NJt47lprOvlEAbn0UkjO68vDnEafTw_Fflrsnh7mef3i6QiLBuSRvAMakJTjLWiwDWnkqaEaVWrrFa4YRgElxXCinKl6wynhDSoznRa1ZxQMo1u97obZ79H7Yeyb32lu04abUdfIkDABcOCB_T6H7oO75lwXSkQJcAIwQHCe6hy1nunm3Lj2j48F5TKna_lr6_lztfy4GtYujkoS1_JrnHSVK3_28SMQgZEBO5qz7Va678xy4hgIMgPi4J_1w</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Ling Cai</creator><creator>Lei He</creator><creator>Yamashita, T.</creator><creator>Yiren Xu</creator><creator>Yuming Zhao</creator><creator>Xin Yang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111201</creationdate><title>Robust Contour Tracking by Combining Region and Boundary Information</title><author>Ling Cai ; Lei He ; Yamashita, T. ; Yiren Xu ; Yuming Zhao ; Xin Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f9870d34622eb408e84a4635ebdb7db2f52098ac12b48bed72633f1d7e6cd8343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Bayesian model</topic><topic>Boundaries</topic><topic>Computational efficiency</topic><topic>contour evolution</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>energy functional</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Frames</topic><topic>General equipment and techniques</topic><topic>Image color analysis</topic><topic>Information, signal and communications theory</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>kernel density estimation</topic><topic>Level set</topic><topic>Pattern recognition</topic><topic>Physics</topic><topic>Robustness</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Surveillance systems</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling Cai</creatorcontrib><creatorcontrib>Lei He</creatorcontrib><creatorcontrib>Yamashita, T.</creatorcontrib><creatorcontrib>Yiren Xu</creatorcontrib><creatorcontrib>Yuming Zhao</creatorcontrib><creatorcontrib>Xin Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ling Cai</au><au>Lei He</au><au>Yamashita, T.</au><au>Yiren Xu</au><au>Yuming Zhao</au><au>Xin Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Contour Tracking by Combining Region and Boundary Information</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>21</volume><issue>12</issue><spage>1784</spage><epage>1794</epage><pages>1784-1794</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>This paper presents a new object tracking model that systematically combines region and boundary features. Besides traditional region features (intensity/color and texture), we design a new boundary-based object detector for accurate and robust tracking in low-contrast and complex scenes, which usually appear in the commonly used monochrome surveillance systems. In our model, region feature-based energy terms are characterized by probability models, and boundary feature terms include edge and frame difference. With a new weighting term, a novel energy functional is proposed to systematically combine the region and boundary-based components, and it is minimized by a level set evolution equation. For an efficient computational cost, motion information is utilized for new frame level set initialization. Compared with region feature-based models, the experimental results show that the proposed model significantly improves the performance under different circumstances, especially for objects in low-contrast and complex environments.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2011.2133550</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2011-12, Vol.21 (12), p.1784-1794
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2011_2133550
source IEEE Xplore (Online service)
subjects Applied sciences
Bayesian methods
Bayesian model
Boundaries
Computational efficiency
contour evolution
Detection, estimation, filtering, equalization, prediction
Detectors
energy functional
Exact sciences and technology
Feature extraction
feature fusion
Frames
General equipment and techniques
Image color analysis
Information, signal and communications theory
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
kernel density estimation
Level set
Pattern recognition
Physics
Robustness
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Signal and communications theory
Signal processing
Signal, noise
Studies
Surface layer
Surveillance systems
Telecommunications and information theory
Texture
Tracking
title Robust Contour Tracking by Combining Region and Boundary Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Contour%20Tracking%20by%20Combining%20Region%20and%20Boundary%20Information&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Ling%20Cai&rft.date=2011-12-01&rft.volume=21&rft.issue=12&rft.spage=1784&rft.epage=1794&rft.pages=1784-1794&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2011.2133550&rft_dat=%3Cproquest_RIE%3E1010895298%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914305332&rft_id=info:pmid/&rft_ieee_id=5739509&rfr_iscdi=true