Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization

This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2024-05, Vol.32 (3), p.755-766
Hauptverfasser: Irofti, Paul, Romero-Ben, Luis, Stoican, Florin, Puig, Vicenc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 3
container_start_page 755
container_title IEEE transactions on control systems technology
container_volume 32
creator Irofti, Paul
Romero-Ben, Luis
Stoican, Florin
Puig, Vicenc
description This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections between hydraulic heads of neighboring nodes in water distribution networks (WDNs). In addition, residuals are directly interpolated instead of hydraulic head values. The results of applying the proposed method to a well-known case study (Modena) demonstrated the improvements of the new interpolation method with respect to a state-of-the-art approach, both in terms of interpolation error (considering state and residual estimation) and posterior localization.
doi_str_mv 10.1109/TCST.2023.3329696
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2023_3329696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10316245</ieee_id><sourcerecordid>3046908847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fa6da97f5a6957af7db4d635c4f88b50209c7c84960bf634191adcc76f403cd33</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6abJLZzVGr1UJRwYoHDyHNJprabmqyRerTm1oPXmaG4ftn4EPolJIBpUReTIdP00FJSjZgrJQgYQ_1qBB1QWoQ-3kmwAoQDA7RUUpzQigXZdVDrxOrY-vbN3ztTedDq6O3CY9iWOLH903yRi-KK51sg8dtZ-MqLPQWwy5E_KLzBt_b7ivED5wv5RJywH__MsfowOlFsid_vY-eRzfT4V0xebgdDy8nhSk5dIXT0GhZOaFBikq7qpnxBpgw3NX1TJCSSFOZmksgMweMU0l1Y0wFjhNmGsb66Hx3dxXD59qmTs3DOrb5pWKEgyR1zatM0R1lYkgpWqdW0S913ChK1Nah2jpUW4fqz2HOnO0y3lr7j2cUSi7YD4vEbkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046908847</pqid></control><display><type>article</type><title>Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Irofti, Paul ; Romero-Ben, Luis ; Stoican, Florin ; Puig, Vicenc</creator><creatorcontrib>Irofti, Paul ; Romero-Ben, Luis ; Stoican, Florin ; Puig, Vicenc</creatorcontrib><description>This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections between hydraulic heads of neighboring nodes in water distribution networks (WDNs). In addition, residuals are directly interpolated instead of hydraulic head values. The results of applying the proposed method to a well-known case study (Modena) demonstrated the improvements of the new interpolation method with respect to a state-of-the-art approach, both in terms of interpolation error (considering state and residual estimation) and posterior localization.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3329696</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data models ; Dictionaries ; Dictionary learning (DL) ; Hydraulic systems ; Interpolation ; leak localization ; Learning ; Localization ; Location awareness ; Modeling ; Sensors ; State estimation ; Water distribution ; water distribution network (WDN) ; Water engineering</subject><ispartof>IEEE transactions on control systems technology, 2024-05, Vol.32 (3), p.755-766</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-fa6da97f5a6957af7db4d635c4f88b50209c7c84960bf634191adcc76f403cd33</cites><orcidid>0000-0002-4550-9113 ; 0000-0002-7541-4334 ; 0000-0002-6364-6429 ; 0000-0002-4790-2031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10316245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10316245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irofti, Paul</creatorcontrib><creatorcontrib>Romero-Ben, Luis</creatorcontrib><creatorcontrib>Stoican, Florin</creatorcontrib><creatorcontrib>Puig, Vicenc</creatorcontrib><title>Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections between hydraulic heads of neighboring nodes in water distribution networks (WDNs). In addition, residuals are directly interpolated instead of hydraulic head values. The results of applying the proposed method to a well-known case study (Modena) demonstrated the improvements of the new interpolation method with respect to a state-of-the-art approach, both in terms of interpolation error (considering state and residual estimation) and posterior localization.</description><subject>Data models</subject><subject>Dictionaries</subject><subject>Dictionary learning (DL)</subject><subject>Hydraulic systems</subject><subject>Interpolation</subject><subject>leak localization</subject><subject>Learning</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Modeling</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Water distribution</subject><subject>water distribution network (WDN)</subject><subject>Water engineering</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6abJLZzVGr1UJRwYoHDyHNJprabmqyRerTm1oPXmaG4ftn4EPolJIBpUReTIdP00FJSjZgrJQgYQ_1qBB1QWoQ-3kmwAoQDA7RUUpzQigXZdVDrxOrY-vbN3ztTedDq6O3CY9iWOLH903yRi-KK51sg8dtZ-MqLPQWwy5E_KLzBt_b7ivED5wv5RJywH__MsfowOlFsid_vY-eRzfT4V0xebgdDy8nhSk5dIXT0GhZOaFBikq7qpnxBpgw3NX1TJCSSFOZmksgMweMU0l1Y0wFjhNmGsb66Hx3dxXD59qmTs3DOrb5pWKEgyR1zatM0R1lYkgpWqdW0S913ChK1Nah2jpUW4fqz2HOnO0y3lr7j2cUSi7YD4vEbkU</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Irofti, Paul</creator><creator>Romero-Ben, Luis</creator><creator>Stoican, Florin</creator><creator>Puig, Vicenc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4550-9113</orcidid><orcidid>https://orcid.org/0000-0002-7541-4334</orcidid><orcidid>https://orcid.org/0000-0002-6364-6429</orcidid><orcidid>https://orcid.org/0000-0002-4790-2031</orcidid></search><sort><creationdate>202405</creationdate><title>Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization</title><author>Irofti, Paul ; Romero-Ben, Luis ; Stoican, Florin ; Puig, Vicenc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fa6da97f5a6957af7db4d635c4f88b50209c7c84960bf634191adcc76f403cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Dictionaries</topic><topic>Dictionary learning (DL)</topic><topic>Hydraulic systems</topic><topic>Interpolation</topic><topic>leak localization</topic><topic>Learning</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Modeling</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Water distribution</topic><topic>water distribution network (WDN)</topic><topic>Water engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irofti, Paul</creatorcontrib><creatorcontrib>Romero-Ben, Luis</creatorcontrib><creatorcontrib>Stoican, Florin</creatorcontrib><creatorcontrib>Puig, Vicenc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irofti, Paul</au><au>Romero-Ben, Luis</au><au>Stoican, Florin</au><au>Puig, Vicenc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2024-05</date><risdate>2024</risdate><volume>32</volume><issue>3</issue><spage>755</spage><epage>766</epage><pages>755-766</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections between hydraulic heads of neighboring nodes in water distribution networks (WDNs). In addition, residuals are directly interpolated instead of hydraulic head values. The results of applying the proposed method to a well-known case study (Modena) demonstrated the improvements of the new interpolation method with respect to a state-of-the-art approach, both in terms of interpolation error (considering state and residual estimation) and posterior localization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3329696</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4550-9113</orcidid><orcidid>https://orcid.org/0000-0002-7541-4334</orcidid><orcidid>https://orcid.org/0000-0002-6364-6429</orcidid><orcidid>https://orcid.org/0000-0002-4790-2031</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2024-05, Vol.32 (3), p.755-766
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2023_3329696
source IEEE Electronic Library (IEL)
subjects Data models
Dictionaries
Dictionary learning (DL)
Hydraulic systems
Interpolation
leak localization
Learning
Localization
Location awareness
Modeling
Sensors
State estimation
Water distribution
water distribution network (WDN)
Water engineering
title Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Dictionaries%20From%20Physical-Based%20Interpolation%20for%20Water%20Network%20Leak%20Localization&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Irofti,%20Paul&rft.date=2024-05&rft.volume=32&rft.issue=3&rft.spage=755&rft.epage=766&rft.pages=755-766&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3329696&rft_dat=%3Cproquest_RIE%3E3046908847%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046908847&rft_id=info:pmid/&rft_ieee_id=10316245&rfr_iscdi=true