Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization
This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2024-05, Vol.32 (3), p.755-766 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 766 |
---|---|
container_issue | 3 |
container_start_page | 755 |
container_title | IEEE transactions on control systems technology |
container_volume | 32 |
creator | Irofti, Paul Romero-Ben, Luis Stoican, Florin Puig, Vicenc |
description | This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections between hydraulic heads of neighboring nodes in water distribution networks (WDNs). In addition, residuals are directly interpolated instead of hydraulic head values. The results of applying the proposed method to a well-known case study (Modena) demonstrated the improvements of the new interpolation method with respect to a state-of-the-art approach, both in terms of interpolation error (considering state and residual estimation) and posterior localization. |
doi_str_mv | 10.1109/TCST.2023.3329696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2023_3329696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10316245</ieee_id><sourcerecordid>3046908847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fa6da97f5a6957af7db4d635c4f88b50209c7c84960bf634191adcc76f403cd33</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6abJLZzVGr1UJRwYoHDyHNJprabmqyRerTm1oPXmaG4ftn4EPolJIBpUReTIdP00FJSjZgrJQgYQ_1qBB1QWoQ-3kmwAoQDA7RUUpzQigXZdVDrxOrY-vbN3ztTedDq6O3CY9iWOLH903yRi-KK51sg8dtZ-MqLPQWwy5E_KLzBt_b7ivED5wv5RJywH__MsfowOlFsid_vY-eRzfT4V0xebgdDy8nhSk5dIXT0GhZOaFBikq7qpnxBpgw3NX1TJCSSFOZmksgMweMU0l1Y0wFjhNmGsb66Hx3dxXD59qmTs3DOrb5pWKEgyR1zatM0R1lYkgpWqdW0S913ChK1Nah2jpUW4fqz2HOnO0y3lr7j2cUSi7YD4vEbkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046908847</pqid></control><display><type>article</type><title>Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Irofti, Paul ; Romero-Ben, Luis ; Stoican, Florin ; Puig, Vicenc</creator><creatorcontrib>Irofti, Paul ; Romero-Ben, Luis ; Stoican, Florin ; Puig, Vicenc</creatorcontrib><description>This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections between hydraulic heads of neighboring nodes in water distribution networks (WDNs). In addition, residuals are directly interpolated instead of hydraulic head values. The results of applying the proposed method to a well-known case study (Modena) demonstrated the improvements of the new interpolation method with respect to a state-of-the-art approach, both in terms of interpolation error (considering state and residual estimation) and posterior localization.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3329696</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data models ; Dictionaries ; Dictionary learning (DL) ; Hydraulic systems ; Interpolation ; leak localization ; Learning ; Localization ; Location awareness ; Modeling ; Sensors ; State estimation ; Water distribution ; water distribution network (WDN) ; Water engineering</subject><ispartof>IEEE transactions on control systems technology, 2024-05, Vol.32 (3), p.755-766</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-fa6da97f5a6957af7db4d635c4f88b50209c7c84960bf634191adcc76f403cd33</cites><orcidid>0000-0002-4550-9113 ; 0000-0002-7541-4334 ; 0000-0002-6364-6429 ; 0000-0002-4790-2031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10316245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10316245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irofti, Paul</creatorcontrib><creatorcontrib>Romero-Ben, Luis</creatorcontrib><creatorcontrib>Stoican, Florin</creatorcontrib><creatorcontrib>Puig, Vicenc</creatorcontrib><title>Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections between hydraulic heads of neighboring nodes in water distribution networks (WDNs). In addition, residuals are directly interpolated instead of hydraulic head values. The results of applying the proposed method to a well-known case study (Modena) demonstrated the improvements of the new interpolation method with respect to a state-of-the-art approach, both in terms of interpolation error (considering state and residual estimation) and posterior localization.</description><subject>Data models</subject><subject>Dictionaries</subject><subject>Dictionary learning (DL)</subject><subject>Hydraulic systems</subject><subject>Interpolation</subject><subject>leak localization</subject><subject>Learning</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Modeling</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Water distribution</subject><subject>water distribution network (WDN)</subject><subject>Water engineering</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6abJLZzVGr1UJRwYoHDyHNJprabmqyRerTm1oPXmaG4ftn4EPolJIBpUReTIdP00FJSjZgrJQgYQ_1qBB1QWoQ-3kmwAoQDA7RUUpzQigXZdVDrxOrY-vbN3ztTedDq6O3CY9iWOLH903yRi-KK51sg8dtZ-MqLPQWwy5E_KLzBt_b7ivED5wv5RJywH__MsfowOlFsid_vY-eRzfT4V0xebgdDy8nhSk5dIXT0GhZOaFBikq7qpnxBpgw3NX1TJCSSFOZmksgMweMU0l1Y0wFjhNmGsb66Hx3dxXD59qmTs3DOrb5pWKEgyR1zatM0R1lYkgpWqdW0S913ChK1Nah2jpUW4fqz2HOnO0y3lr7j2cUSi7YD4vEbkU</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Irofti, Paul</creator><creator>Romero-Ben, Luis</creator><creator>Stoican, Florin</creator><creator>Puig, Vicenc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4550-9113</orcidid><orcidid>https://orcid.org/0000-0002-7541-4334</orcidid><orcidid>https://orcid.org/0000-0002-6364-6429</orcidid><orcidid>https://orcid.org/0000-0002-4790-2031</orcidid></search><sort><creationdate>202405</creationdate><title>Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization</title><author>Irofti, Paul ; Romero-Ben, Luis ; Stoican, Florin ; Puig, Vicenc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fa6da97f5a6957af7db4d635c4f88b50209c7c84960bf634191adcc76f403cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Dictionaries</topic><topic>Dictionary learning (DL)</topic><topic>Hydraulic systems</topic><topic>Interpolation</topic><topic>leak localization</topic><topic>Learning</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Modeling</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Water distribution</topic><topic>water distribution network (WDN)</topic><topic>Water engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irofti, Paul</creatorcontrib><creatorcontrib>Romero-Ben, Luis</creatorcontrib><creatorcontrib>Stoican, Florin</creatorcontrib><creatorcontrib>Puig, Vicenc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irofti, Paul</au><au>Romero-Ben, Luis</au><au>Stoican, Florin</au><au>Puig, Vicenc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2024-05</date><risdate>2024</risdate><volume>32</volume><issue>3</issue><spage>755</spage><epage>766</epage><pages>755-766</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This article presents a leak localization methodology based on state estimation and learning. The first is handled by an interpolation scheme, whereas dictionary learning (DL) is considered for the second stage. The novel proposed interpolation technique exploits the physics of the interconnections between hydraulic heads of neighboring nodes in water distribution networks (WDNs). In addition, residuals are directly interpolated instead of hydraulic head values. The results of applying the proposed method to a well-known case study (Modena) demonstrated the improvements of the new interpolation method with respect to a state-of-the-art approach, both in terms of interpolation error (considering state and residual estimation) and posterior localization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3329696</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4550-9113</orcidid><orcidid>https://orcid.org/0000-0002-7541-4334</orcidid><orcidid>https://orcid.org/0000-0002-6364-6429</orcidid><orcidid>https://orcid.org/0000-0002-4790-2031</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2024-05, Vol.32 (3), p.755-766 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2023_3329696 |
source | IEEE Electronic Library (IEL) |
subjects | Data models Dictionaries Dictionary learning (DL) Hydraulic systems Interpolation leak localization Learning Localization Location awareness Modeling Sensors State estimation Water distribution water distribution network (WDN) Water engineering |
title | Learning Dictionaries From Physical-Based Interpolation for Water Network Leak Localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Dictionaries%20From%20Physical-Based%20Interpolation%20for%20Water%20Network%20Leak%20Localization&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Irofti,%20Paul&rft.date=2024-05&rft.volume=32&rft.issue=3&rft.spage=755&rft.epage=766&rft.pages=755-766&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3329696&rft_dat=%3Cproquest_RIE%3E3046908847%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046908847&rft_id=info:pmid/&rft_ieee_id=10316245&rfr_iscdi=true |