Design and Experimental Verification of Real-Time Nonlinear Predictive Controller for Improving the Stability of Production Vehicles

Vehicle stability control under extreme conditions is influenced by the coupled nonlinear characteristics of vehicle dynamics, corresponding safety constraints, and rapid response requirements. To address these problems, this brief proposes a real-time nonlinear predictive controller for a distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2021-09, Vol.29 (5), p.2206-2213
Hauptverfasser: Wang, Ping, Liu, Hanghang, Guo, Lulu, Zhang, Lin, Ding, Haitao, Chen, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2213
container_issue 5
container_start_page 2206
container_title IEEE transactions on control systems technology
container_volume 29
creator Wang, Ping
Liu, Hanghang
Guo, Lulu
Zhang, Lin
Ding, Haitao
Chen, Hong
description Vehicle stability control under extreme conditions is influenced by the coupled nonlinear characteristics of vehicle dynamics, corresponding safety constraints, and rapid response requirements. To address these problems, this brief proposes a real-time nonlinear predictive controller for a distributed drive electric vehicle. First, nonlinear lateral dynamics of the vehicle are applied to develop the stability controller on low friction coefficient surfaces. Second, the requirement for suppressing the sideslip angle is integrated into the objective function to prevent the vehicle from destabilizing due to excessive sideslip angles. Finally, a fast solution algorithm is proposed by solving the transformed two-point boundary value problem, making it possible to apply nonlinear predictive controller to experimental road tests. The experiments with a production vehicle are conducted on the snow-covered dynamic roads of the DongFeng's winter test center. The test results on low friction coefficient roads show that the overall passing speed can be improved from 50-55 to 60-70 km/h with the proposed controller.
doi_str_mv 10.1109/TCST.2020.3015832
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2020_3015832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9199111</ieee_id><sourcerecordid>2558824373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c9c1ab53c718b1586bfca1096190948006eb056c1adfcffab7f294649fe432e03</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxTdGExH9AMZLE8-L_bNbtkeDqCREiSDXTbdMoWRpsVuI3P3gdoV4mpfMmzczvyS5JbhHCBYPs8F01qOY4h7DJC8YPUs6JM-LFBc8P48ac5bynPHL5Kpp1hiTLKf9TvLzBI1ZWiTtAg2_t-DNBmyQNZpHqY2SwTiLnEYfIOt0FrvozdnaWJAeTTwsjApmD2jgbPCursEj7Twabbbe7Y1dorACNA2yMrUJhzZo4t1ip_5i57AyqobmOrnQsm7g5lS7yefzcDZ4TcfvL6PB4zhVVLCQKqGIrHKm-qSo4pO80krG5zkRWGQFxhwqnPNoWmiltaz6moqMZ0JDxihg1k3uj7nxuK8dNKFcu523cWVJI6uCZqzPooscXcq7pvGgy22kIv2hJLhsYZct7LKFXZ5gx5m744wBgH-_IEIQQtgvFIh9TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558824373</pqid></control><display><type>article</type><title>Design and Experimental Verification of Real-Time Nonlinear Predictive Controller for Improving the Stability of Production Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ping ; Liu, Hanghang ; Guo, Lulu ; Zhang, Lin ; Ding, Haitao ; Chen, Hong</creator><creatorcontrib>Wang, Ping ; Liu, Hanghang ; Guo, Lulu ; Zhang, Lin ; Ding, Haitao ; Chen, Hong</creatorcontrib><description>Vehicle stability control under extreme conditions is influenced by the coupled nonlinear characteristics of vehicle dynamics, corresponding safety constraints, and rapid response requirements. To address these problems, this brief proposes a real-time nonlinear predictive controller for a distributed drive electric vehicle. First, nonlinear lateral dynamics of the vehicle are applied to develop the stability controller on low friction coefficient surfaces. Second, the requirement for suppressing the sideslip angle is integrated into the objective function to prevent the vehicle from destabilizing due to excessive sideslip angles. Finally, a fast solution algorithm is proposed by solving the transformed two-point boundary value problem, making it possible to apply nonlinear predictive controller to experimental road tests. The experiments with a production vehicle are conducted on the snow-covered dynamic roads of the DongFeng's winter test center. The test results on low friction coefficient roads show that the overall passing speed can be improved from 50-55 to 60-70 km/h with the proposed controller.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2020.3015832</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Boundary value problems ; Coefficient of friction ; Control stability ; Controllers ; Dynamic stability ; Electric vehicles ; Experimental verification ; Friction ; Lateral stability ; low friction coefficient ; Nonlinear control ; Nonlinear dynamics ; nonlinear model of predictive control (NMPC) ; Pontryagin’s minimum principle (PMP) ; Predictive control ; Real time ; Real-time systems ; Road tests ; Sideslip ; Snow cover ; Stability analysis ; Surface stability ; Tires ; Vehicle dynamics ; vehicle stability control ; Wheels</subject><ispartof>IEEE transactions on control systems technology, 2021-09, Vol.29 (5), p.2206-2213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c9c1ab53c718b1586bfca1096190948006eb056c1adfcffab7f294649fe432e03</citedby><cites>FETCH-LOGICAL-c293t-c9c1ab53c718b1586bfca1096190948006eb056c1adfcffab7f294649fe432e03</cites><orcidid>0000-0002-1724-8649 ; 0000-0003-2285-2469 ; 0000-0003-2729-2907 ; 0000-0002-9358-0264 ; 0000-0001-6718-8392 ; 0000-0002-9947-1034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9199111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9199111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Liu, Hanghang</creatorcontrib><creatorcontrib>Guo, Lulu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Ding, Haitao</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><title>Design and Experimental Verification of Real-Time Nonlinear Predictive Controller for Improving the Stability of Production Vehicles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Vehicle stability control under extreme conditions is influenced by the coupled nonlinear characteristics of vehicle dynamics, corresponding safety constraints, and rapid response requirements. To address these problems, this brief proposes a real-time nonlinear predictive controller for a distributed drive electric vehicle. First, nonlinear lateral dynamics of the vehicle are applied to develop the stability controller on low friction coefficient surfaces. Second, the requirement for suppressing the sideslip angle is integrated into the objective function to prevent the vehicle from destabilizing due to excessive sideslip angles. Finally, a fast solution algorithm is proposed by solving the transformed two-point boundary value problem, making it possible to apply nonlinear predictive controller to experimental road tests. The experiments with a production vehicle are conducted on the snow-covered dynamic roads of the DongFeng's winter test center. The test results on low friction coefficient roads show that the overall passing speed can be improved from 50-55 to 60-70 km/h with the proposed controller.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Coefficient of friction</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Dynamic stability</subject><subject>Electric vehicles</subject><subject>Experimental verification</subject><subject>Friction</subject><subject>Lateral stability</subject><subject>low friction coefficient</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>nonlinear model of predictive control (NMPC)</subject><subject>Pontryagin’s minimum principle (PMP)</subject><subject>Predictive control</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Road tests</subject><subject>Sideslip</subject><subject>Snow cover</subject><subject>Stability analysis</subject><subject>Surface stability</subject><subject>Tires</subject><subject>Vehicle dynamics</subject><subject>vehicle stability control</subject><subject>Wheels</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxTdGExH9AMZLE8-L_bNbtkeDqCREiSDXTbdMoWRpsVuI3P3gdoV4mpfMmzczvyS5JbhHCBYPs8F01qOY4h7DJC8YPUs6JM-LFBc8P48ac5bynPHL5Kpp1hiTLKf9TvLzBI1ZWiTtAg2_t-DNBmyQNZpHqY2SwTiLnEYfIOt0FrvozdnaWJAeTTwsjApmD2jgbPCursEj7Twabbbe7Y1dorACNA2yMrUJhzZo4t1ip_5i57AyqobmOrnQsm7g5lS7yefzcDZ4TcfvL6PB4zhVVLCQKqGIrHKm-qSo4pO80krG5zkRWGQFxhwqnPNoWmiltaz6moqMZ0JDxihg1k3uj7nxuK8dNKFcu523cWVJI6uCZqzPooscXcq7pvGgy22kIv2hJLhsYZct7LKFXZ5gx5m744wBgH-_IEIQQtgvFIh9TQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Wang, Ping</creator><creator>Liu, Hanghang</creator><creator>Guo, Lulu</creator><creator>Zhang, Lin</creator><creator>Ding, Haitao</creator><creator>Chen, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1724-8649</orcidid><orcidid>https://orcid.org/0000-0003-2285-2469</orcidid><orcidid>https://orcid.org/0000-0003-2729-2907</orcidid><orcidid>https://orcid.org/0000-0002-9358-0264</orcidid><orcidid>https://orcid.org/0000-0001-6718-8392</orcidid><orcidid>https://orcid.org/0000-0002-9947-1034</orcidid></search><sort><creationdate>202109</creationdate><title>Design and Experimental Verification of Real-Time Nonlinear Predictive Controller for Improving the Stability of Production Vehicles</title><author>Wang, Ping ; Liu, Hanghang ; Guo, Lulu ; Zhang, Lin ; Ding, Haitao ; Chen, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c9c1ab53c718b1586bfca1096190948006eb056c1adfcffab7f294649fe432e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Coefficient of friction</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Dynamic stability</topic><topic>Electric vehicles</topic><topic>Experimental verification</topic><topic>Friction</topic><topic>Lateral stability</topic><topic>low friction coefficient</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>nonlinear model of predictive control (NMPC)</topic><topic>Pontryagin’s minimum principle (PMP)</topic><topic>Predictive control</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Road tests</topic><topic>Sideslip</topic><topic>Snow cover</topic><topic>Stability analysis</topic><topic>Surface stability</topic><topic>Tires</topic><topic>Vehicle dynamics</topic><topic>vehicle stability control</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Liu, Hanghang</creatorcontrib><creatorcontrib>Guo, Lulu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Ding, Haitao</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ping</au><au>Liu, Hanghang</au><au>Guo, Lulu</au><au>Zhang, Lin</au><au>Ding, Haitao</au><au>Chen, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Experimental Verification of Real-Time Nonlinear Predictive Controller for Improving the Stability of Production Vehicles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2021-09</date><risdate>2021</risdate><volume>29</volume><issue>5</issue><spage>2206</spage><epage>2213</epage><pages>2206-2213</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Vehicle stability control under extreme conditions is influenced by the coupled nonlinear characteristics of vehicle dynamics, corresponding safety constraints, and rapid response requirements. To address these problems, this brief proposes a real-time nonlinear predictive controller for a distributed drive electric vehicle. First, nonlinear lateral dynamics of the vehicle are applied to develop the stability controller on low friction coefficient surfaces. Second, the requirement for suppressing the sideslip angle is integrated into the objective function to prevent the vehicle from destabilizing due to excessive sideslip angles. Finally, a fast solution algorithm is proposed by solving the transformed two-point boundary value problem, making it possible to apply nonlinear predictive controller to experimental road tests. The experiments with a production vehicle are conducted on the snow-covered dynamic roads of the DongFeng's winter test center. The test results on low friction coefficient roads show that the overall passing speed can be improved from 50-55 to 60-70 km/h with the proposed controller.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2020.3015832</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1724-8649</orcidid><orcidid>https://orcid.org/0000-0003-2285-2469</orcidid><orcidid>https://orcid.org/0000-0003-2729-2907</orcidid><orcidid>https://orcid.org/0000-0002-9358-0264</orcidid><orcidid>https://orcid.org/0000-0001-6718-8392</orcidid><orcidid>https://orcid.org/0000-0002-9947-1034</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2021-09, Vol.29 (5), p.2206-2213
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2020_3015832
source IEEE Electronic Library (IEL)
subjects Algorithms
Boundary value problems
Coefficient of friction
Control stability
Controllers
Dynamic stability
Electric vehicles
Experimental verification
Friction
Lateral stability
low friction coefficient
Nonlinear control
Nonlinear dynamics
nonlinear model of predictive control (NMPC)
Pontryagin’s minimum principle (PMP)
Predictive control
Real time
Real-time systems
Road tests
Sideslip
Snow cover
Stability analysis
Surface stability
Tires
Vehicle dynamics
vehicle stability control
Wheels
title Design and Experimental Verification of Real-Time Nonlinear Predictive Controller for Improving the Stability of Production Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Experimental%20Verification%20of%20Real-Time%20Nonlinear%20Predictive%20Controller%20for%20Improving%20the%20Stability%20of%20Production%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Wang,%20Ping&rft.date=2021-09&rft.volume=29&rft.issue=5&rft.spage=2206&rft.epage=2213&rft.pages=2206-2213&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2020.3015832&rft_dat=%3Cproquest_RIE%3E2558824373%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558824373&rft_id=info:pmid/&rft_ieee_id=9199111&rfr_iscdi=true