Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot

We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2020-07, Vol.28 (4), p.1189-1202
Hauptverfasser: Cristofalo, Eric, Montijano, Eduardo, Schwager, Mac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1202
container_issue 4
container_start_page 1189
container_title IEEE transactions on control systems technology
container_volume 28
creator Cristofalo, Eric
Montijano, Eduardo
Schwager, Mac
description We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a controller that seeks the most valuable robot motions for estimating the 3-D positions of features in the local robot body frame. The control algorithm uses an explicit expression for the gradient of the error covariance matrices for both the EKF and UKF at the next time step. This gradient approach is demonstrated in both simulations and real-world experiments on a quadrotor with a downward facing camera where it is shown to outperform a wide variety of the state-of-the-art active sensing strategies. Our proposed control algorithms are computationally efficient, making them well-suited for fast, online reconstructions onboard microaerial vehicles.
doi_str_mv 10.1109/TCST.2019.2905227
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2019_2905227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8680001</ieee_id><sourcerecordid>2413217420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-20bbf4a9288d76afc4005aab286bfda6cdc21b156b8b3e4b8fcf02fb5424b5be3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB8_QNwEXE-9eU5mWWurQkGoVZchySQ4pU5qki78905pcXXP4jvnwofQDYExIdDcr6ZvqzEF0oxpA4LS-gSNiBCqAiXF6ZBBskoKJs_RRc5rAMIFrUdo9tHlLvbVg8m-xdPYlxQ3OMSE5yYXzKpHvPQu9rmknSsDiT-78oVNjyc-dWaDl9HGcoXOgtlkf328l-h9PltNn6vF69PLdLKoHGOyVBSsDdw0VKm2liY4DiCMsVRJG1ojXesosURIqyzz3KrgAtBgBafcCuvZJbo77G5T_Nn5XPQ67lI_vNSUE0ZJzSkMFDlQLsWckw96m7pvk341Ab23pfe29N6WPtoaOreHTue9_-eVVDCoYn9mJmVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413217420</pqid></control><display><type>article</type><title>Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Cristofalo, Eric ; Montijano, Eduardo ; Schwager, Mac</creator><creatorcontrib>Cristofalo, Eric ; Montijano, Eduardo ; Schwager, Mac</creatorcontrib><description>We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a controller that seeks the most valuable robot motions for estimating the 3-D positions of features in the local robot body frame. The control algorithm uses an explicit expression for the gradient of the error covariance matrices for both the EKF and UKF at the next time step. This gradient approach is demonstrated in both simulations and real-world experiments on a quadrotor with a downward facing camera where it is shown to outperform a wide variety of the state-of-the-art active sensing strategies. Our proposed control algorithms are computationally efficient, making them well-suited for fast, online reconstructions onboard microaerial vehicles.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2019.2905227</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cameras ; Computer simulation ; Control algorithms ; Control theory ; Controllers ; Covariance matrices ; Covariance matrix ; Estimation ; Extended Kalman filter ; Micro air vehicles (MAV) ; Robot control ; Robot vision systems ; Robots ; Target tracking ; unmanned autonomous vehicles ; visual servoing</subject><ispartof>IEEE transactions on control systems technology, 2020-07, Vol.28 (4), p.1189-1202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-20bbf4a9288d76afc4005aab286bfda6cdc21b156b8b3e4b8fcf02fb5424b5be3</citedby><cites>FETCH-LOGICAL-c336t-20bbf4a9288d76afc4005aab286bfda6cdc21b156b8b3e4b8fcf02fb5424b5be3</cites><orcidid>0000-0002-7871-3663 ; 0000-0002-5176-3767 ; 0000-0003-1712-4600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8680001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8680001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cristofalo, Eric</creatorcontrib><creatorcontrib>Montijano, Eduardo</creatorcontrib><creatorcontrib>Schwager, Mac</creatorcontrib><title>Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a controller that seeks the most valuable robot motions for estimating the 3-D positions of features in the local robot body frame. The control algorithm uses an explicit expression for the gradient of the error covariance matrices for both the EKF and UKF at the next time step. This gradient approach is demonstrated in both simulations and real-world experiments on a quadrotor with a downward facing camera where it is shown to outperform a wide variety of the state-of-the-art active sensing strategies. Our proposed control algorithms are computationally efficient, making them well-suited for fast, online reconstructions onboard microaerial vehicles.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Micro air vehicles (MAV)</subject><subject>Robot control</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>Target tracking</subject><subject>unmanned autonomous vehicles</subject><subject>visual servoing</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWB8_QNwEXE-9eU5mWWurQkGoVZchySQ4pU5qki78905pcXXP4jvnwofQDYExIdDcr6ZvqzEF0oxpA4LS-gSNiBCqAiXF6ZBBskoKJs_RRc5rAMIFrUdo9tHlLvbVg8m-xdPYlxQ3OMSE5yYXzKpHvPQu9rmknSsDiT-78oVNjyc-dWaDl9HGcoXOgtlkf328l-h9PltNn6vF69PLdLKoHGOyVBSsDdw0VKm2liY4DiCMsVRJG1ojXesosURIqyzz3KrgAtBgBafcCuvZJbo77G5T_Nn5XPQ67lI_vNSUE0ZJzSkMFDlQLsWckw96m7pvk341Ab23pfe29N6WPtoaOreHTue9_-eVVDCoYn9mJmVf</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Cristofalo, Eric</creator><creator>Montijano, Eduardo</creator><creator>Schwager, Mac</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7871-3663</orcidid><orcidid>https://orcid.org/0000-0002-5176-3767</orcidid><orcidid>https://orcid.org/0000-0003-1712-4600</orcidid></search><sort><creationdate>202007</creationdate><title>Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot</title><author>Cristofalo, Eric ; Montijano, Eduardo ; Schwager, Mac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-20bbf4a9288d76afc4005aab286bfda6cdc21b156b8b3e4b8fcf02fb5424b5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Micro air vehicles (MAV)</topic><topic>Robot control</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>Target tracking</topic><topic>unmanned autonomous vehicles</topic><topic>visual servoing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cristofalo, Eric</creatorcontrib><creatorcontrib>Montijano, Eduardo</creatorcontrib><creatorcontrib>Schwager, Mac</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cristofalo, Eric</au><au>Montijano, Eduardo</au><au>Schwager, Mac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2020-07</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>1189</spage><epage>1202</epage><pages>1189-1202</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a controller that seeks the most valuable robot motions for estimating the 3-D positions of features in the local robot body frame. The control algorithm uses an explicit expression for the gradient of the error covariance matrices for both the EKF and UKF at the next time step. This gradient approach is demonstrated in both simulations and real-world experiments on a quadrotor with a downward facing camera where it is shown to outperform a wide variety of the state-of-the-art active sensing strategies. Our proposed control algorithms are computationally efficient, making them well-suited for fast, online reconstructions onboard microaerial vehicles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2019.2905227</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7871-3663</orcidid><orcidid>https://orcid.org/0000-0002-5176-3767</orcidid><orcidid>https://orcid.org/0000-0003-1712-4600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2020-07, Vol.28 (4), p.1189-1202
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2019_2905227
source IEEE Electronic Library (IEL)
subjects Algorithms
Cameras
Computer simulation
Control algorithms
Control theory
Controllers
Covariance matrices
Covariance matrix
Estimation
Extended Kalman filter
Micro air vehicles (MAV)
Robot control
Robot vision systems
Robots
Target tracking
unmanned autonomous vehicles
visual servoing
title Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision-Based%20Control%20for%20Fast%203-D%20Reconstruction%20With%20an%20Aerial%20Robot&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Cristofalo,%20Eric&rft.date=2020-07&rft.volume=28&rft.issue=4&rft.spage=1189&rft.epage=1202&rft.pages=1189-1202&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2019.2905227&rft_dat=%3Cproquest_RIE%3E2413217420%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413217420&rft_id=info:pmid/&rft_ieee_id=8680001&rfr_iscdi=true