Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot
We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a contro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2020-07, Vol.28 (4), p.1189-1202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1202 |
---|---|
container_issue | 4 |
container_start_page | 1189 |
container_title | IEEE transactions on control systems technology |
container_volume | 28 |
creator | Cristofalo, Eric Montijano, Eduardo Schwager, Mac |
description | We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a controller that seeks the most valuable robot motions for estimating the 3-D positions of features in the local robot body frame. The control algorithm uses an explicit expression for the gradient of the error covariance matrices for both the EKF and UKF at the next time step. This gradient approach is demonstrated in both simulations and real-world experiments on a quadrotor with a downward facing camera where it is shown to outperform a wide variety of the state-of-the-art active sensing strategies. Our proposed control algorithms are computationally efficient, making them well-suited for fast, online reconstructions onboard microaerial vehicles. |
doi_str_mv | 10.1109/TCST.2019.2905227 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2019_2905227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8680001</ieee_id><sourcerecordid>2413217420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-20bbf4a9288d76afc4005aab286bfda6cdc21b156b8b3e4b8fcf02fb5424b5be3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB8_QNwEXE-9eU5mWWurQkGoVZchySQ4pU5qki78905pcXXP4jvnwofQDYExIdDcr6ZvqzEF0oxpA4LS-gSNiBCqAiXF6ZBBskoKJs_RRc5rAMIFrUdo9tHlLvbVg8m-xdPYlxQ3OMSE5yYXzKpHvPQu9rmknSsDiT-78oVNjyc-dWaDl9HGcoXOgtlkf328l-h9PltNn6vF69PLdLKoHGOyVBSsDdw0VKm2liY4DiCMsVRJG1ojXesosURIqyzz3KrgAtBgBafcCuvZJbo77G5T_Nn5XPQ67lI_vNSUE0ZJzSkMFDlQLsWckw96m7pvk341Ab23pfe29N6WPtoaOreHTue9_-eVVDCoYn9mJmVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413217420</pqid></control><display><type>article</type><title>Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Cristofalo, Eric ; Montijano, Eduardo ; Schwager, Mac</creator><creatorcontrib>Cristofalo, Eric ; Montijano, Eduardo ; Schwager, Mac</creatorcontrib><description>We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a controller that seeks the most valuable robot motions for estimating the 3-D positions of features in the local robot body frame. The control algorithm uses an explicit expression for the gradient of the error covariance matrices for both the EKF and UKF at the next time step. This gradient approach is demonstrated in both simulations and real-world experiments on a quadrotor with a downward facing camera where it is shown to outperform a wide variety of the state-of-the-art active sensing strategies. Our proposed control algorithms are computationally efficient, making them well-suited for fast, online reconstructions onboard microaerial vehicles.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2019.2905227</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cameras ; Computer simulation ; Control algorithms ; Control theory ; Controllers ; Covariance matrices ; Covariance matrix ; Estimation ; Extended Kalman filter ; Micro air vehicles (MAV) ; Robot control ; Robot vision systems ; Robots ; Target tracking ; unmanned autonomous vehicles ; visual servoing</subject><ispartof>IEEE transactions on control systems technology, 2020-07, Vol.28 (4), p.1189-1202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-20bbf4a9288d76afc4005aab286bfda6cdc21b156b8b3e4b8fcf02fb5424b5be3</citedby><cites>FETCH-LOGICAL-c336t-20bbf4a9288d76afc4005aab286bfda6cdc21b156b8b3e4b8fcf02fb5424b5be3</cites><orcidid>0000-0002-7871-3663 ; 0000-0002-5176-3767 ; 0000-0003-1712-4600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8680001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8680001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cristofalo, Eric</creatorcontrib><creatorcontrib>Montijano, Eduardo</creatorcontrib><creatorcontrib>Schwager, Mac</creatorcontrib><title>Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a controller that seeks the most valuable robot motions for estimating the 3-D positions of features in the local robot body frame. The control algorithm uses an explicit expression for the gradient of the error covariance matrices for both the EKF and UKF at the next time step. This gradient approach is demonstrated in both simulations and real-world experiments on a quadrotor with a downward facing camera where it is shown to outperform a wide variety of the state-of-the-art active sensing strategies. Our proposed control algorithms are computationally efficient, making them well-suited for fast, online reconstructions onboard microaerial vehicles.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Micro air vehicles (MAV)</subject><subject>Robot control</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>Target tracking</subject><subject>unmanned autonomous vehicles</subject><subject>visual servoing</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWB8_QNwEXE-9eU5mWWurQkGoVZchySQ4pU5qki78905pcXXP4jvnwofQDYExIdDcr6ZvqzEF0oxpA4LS-gSNiBCqAiXF6ZBBskoKJs_RRc5rAMIFrUdo9tHlLvbVg8m-xdPYlxQ3OMSE5yYXzKpHvPQu9rmknSsDiT-78oVNjyc-dWaDl9HGcoXOgtlkf328l-h9PltNn6vF69PLdLKoHGOyVBSsDdw0VKm2liY4DiCMsVRJG1ojXesosURIqyzz3KrgAtBgBafcCuvZJbo77G5T_Nn5XPQ67lI_vNSUE0ZJzSkMFDlQLsWckw96m7pvk341Ab23pfe29N6WPtoaOreHTue9_-eVVDCoYn9mJmVf</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Cristofalo, Eric</creator><creator>Montijano, Eduardo</creator><creator>Schwager, Mac</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7871-3663</orcidid><orcidid>https://orcid.org/0000-0002-5176-3767</orcidid><orcidid>https://orcid.org/0000-0003-1712-4600</orcidid></search><sort><creationdate>202007</creationdate><title>Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot</title><author>Cristofalo, Eric ; Montijano, Eduardo ; Schwager, Mac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-20bbf4a9288d76afc4005aab286bfda6cdc21b156b8b3e4b8fcf02fb5424b5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Micro air vehicles (MAV)</topic><topic>Robot control</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>Target tracking</topic><topic>unmanned autonomous vehicles</topic><topic>visual servoing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cristofalo, Eric</creatorcontrib><creatorcontrib>Montijano, Eduardo</creatorcontrib><creatorcontrib>Schwager, Mac</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cristofalo, Eric</au><au>Montijano, Eduardo</au><au>Schwager, Mac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2020-07</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>1189</spage><epage>1202</epage><pages>1189-1202</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>We propose an active perception controller to drive an aerial robot to localize 3-D features in an environment using an onboard monocular camera. The robot estimates feature positions with either an extended Kalman filter (EKF) or an unscented Kalman filter (UKF). For each filter, we derive a controller that seeks the most valuable robot motions for estimating the 3-D positions of features in the local robot body frame. The control algorithm uses an explicit expression for the gradient of the error covariance matrices for both the EKF and UKF at the next time step. This gradient approach is demonstrated in both simulations and real-world experiments on a quadrotor with a downward facing camera where it is shown to outperform a wide variety of the state-of-the-art active sensing strategies. Our proposed control algorithms are computationally efficient, making them well-suited for fast, online reconstructions onboard microaerial vehicles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2019.2905227</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7871-3663</orcidid><orcidid>https://orcid.org/0000-0002-5176-3767</orcidid><orcidid>https://orcid.org/0000-0003-1712-4600</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2020-07, Vol.28 (4), p.1189-1202 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2019_2905227 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cameras Computer simulation Control algorithms Control theory Controllers Covariance matrices Covariance matrix Estimation Extended Kalman filter Micro air vehicles (MAV) Robot control Robot vision systems Robots Target tracking unmanned autonomous vehicles visual servoing |
title | Vision-Based Control for Fast 3-D Reconstruction With an Aerial Robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision-Based%20Control%20for%20Fast%203-D%20Reconstruction%20With%20an%20Aerial%20Robot&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Cristofalo,%20Eric&rft.date=2020-07&rft.volume=28&rft.issue=4&rft.spage=1189&rft.epage=1202&rft.pages=1189-1202&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2019.2905227&rft_dat=%3Cproquest_RIE%3E2413217420%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413217420&rft_id=info:pmid/&rft_ieee_id=8680001&rfr_iscdi=true |