Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme
This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonun...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2020-05, Vol.28 (3), p.1140-1148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1148 |
---|---|
container_issue | 3 |
container_start_page | 1140 |
container_title | IEEE transactions on control systems technology |
container_volume | 28 |
creator | Lin, Li-Gang Xin, Ming |
description | This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonunique state-dependent coefficients (SDCs) of the SDRE scheme is analyzed from a new perspective. This is formulated as a simple equivalence condition with reduced dimensionality, which circumvents the excessive online computational effort to check the solvability of classical SDRE. The condition is derived in a way to facilitate the generalization to all meaningful SDCs. Moreover, due to unsolvable AREs, all conflicts against the primary objective of posture balance of the robot are revealed and illustrated, with a connection to the robot physical parameters. At the system states that cause such conflicts and other unsolvable AREs, a simple analytical solution via alternative SDC constructions is suggested. More potential advantages of this SDC construction over the classical scheme are revealed in simulations, e.g., the maximum input/torque and total energy consumption. |
doi_str_mv | 10.1109/TCST.2019.2899802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2019_2899802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664452</ieee_id><sourcerecordid>2389365033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ae6306ebe84d600bcc522653ce8f98e8ab6d719e74d9ab2a1e9d30eddde334d23</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZjyZLLmc3P2BM2Cp6V9Lm1HV0zUw6Zf_elg2vznvxPoeXB6FbSkaUEv2QJqt0xAjVI6a0VoSdoQEVQkVESXHeZSJ5JAWXl-gqhA0hNBZsPECfC9fUVQPG48Q1rXc1diVOf130sQaoweKly12LH03osmvwwv1AjSeNqQ-hCtg0Fk8hVF9Nz62myxleFWvYwjW6KE0d4OZ0h-j9aZYmL9H87fk1mcyjggvdRgYkJxJyULGVhORFIRjrdhagSq1AmVzaMdUwjq02OTMUtOUErLXAeWwZH6L749-dd997CG22cXvfzQsZ40pzKQjnXYseW4V3IXgos52vtsYfMkqyXmDWC8x6gdlJYMfcHZkKAP77Ssq4U8f_ACH1a9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389365033</pqid></control><display><type>article</type><title>Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Li-Gang ; Xin, Ming</creator><creatorcontrib>Lin, Li-Gang ; Xin, Ming</creatorcontrib><description>This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonunique state-dependent coefficients (SDCs) of the SDRE scheme is analyzed from a new perspective. This is formulated as a simple equivalence condition with reduced dimensionality, which circumvents the excessive online computational effort to check the solvability of classical SDRE. The condition is derived in a way to facilitate the generalization to all meaningful SDCs. Moreover, due to unsolvable AREs, all conflicts against the primary objective of posture balance of the robot are revealed and illustrated, with a connection to the robot physical parameters. At the system states that cause such conflicts and other unsolvable AREs, a simple analytical solution via alternative SDC constructions is suggested. More potential advantages of this SDC construction over the classical scheme are revealed in simulations, e.g., the maximum input/torque and total energy consumption.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2019.2899802</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Applicability and computational analysis ; Computer simulation ; Control design ; Energy consumption ; Exact solutions ; Mathematical analysis ; Mathematical model ; Mobile robots ; Nonlinear control ; nonlinear control systems ; Nonlinear dynamical systems ; Pendulums ; Physical properties ; Riccati equation ; Riccati equations ; Robot control ; Robots ; state-dependent Riccati equation (SDRE) ; wheeled inverted pendulum (WIP) ; Wheels</subject><ispartof>IEEE transactions on control systems technology, 2020-05, Vol.28 (3), p.1140-1148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ae6306ebe84d600bcc522653ce8f98e8ab6d719e74d9ab2a1e9d30eddde334d23</citedby><cites>FETCH-LOGICAL-c359t-ae6306ebe84d600bcc522653ce8f98e8ab6d719e74d9ab2a1e9d30eddde334d23</cites><orcidid>0000-0001-5732-9964 ; 0000-0002-9947-6986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8664452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Li-Gang</creatorcontrib><creatorcontrib>Xin, Ming</creatorcontrib><title>Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonunique state-dependent coefficients (SDCs) of the SDRE scheme is analyzed from a new perspective. This is formulated as a simple equivalence condition with reduced dimensionality, which circumvents the excessive online computational effort to check the solvability of classical SDRE. The condition is derived in a way to facilitate the generalization to all meaningful SDCs. Moreover, due to unsolvable AREs, all conflicts against the primary objective of posture balance of the robot are revealed and illustrated, with a connection to the robot physical parameters. At the system states that cause such conflicts and other unsolvable AREs, a simple analytical solution via alternative SDC constructions is suggested. More potential advantages of this SDC construction over the classical scheme are revealed in simulations, e.g., the maximum input/torque and total energy consumption.</description><subject>Applicability and computational analysis</subject><subject>Computer simulation</subject><subject>Control design</subject><subject>Energy consumption</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mobile robots</subject><subject>Nonlinear control</subject><subject>nonlinear control systems</subject><subject>Nonlinear dynamical systems</subject><subject>Pendulums</subject><subject>Physical properties</subject><subject>Riccati equation</subject><subject>Riccati equations</subject><subject>Robot control</subject><subject>Robots</subject><subject>state-dependent Riccati equation (SDRE)</subject><subject>wheeled inverted pendulum (WIP)</subject><subject>Wheels</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZjyZLLmc3P2BM2Cp6V9Lm1HV0zUw6Zf_elg2vznvxPoeXB6FbSkaUEv2QJqt0xAjVI6a0VoSdoQEVQkVESXHeZSJ5JAWXl-gqhA0hNBZsPECfC9fUVQPG48Q1rXc1diVOf130sQaoweKly12LH03osmvwwv1AjSeNqQ-hCtg0Fk8hVF9Nz62myxleFWvYwjW6KE0d4OZ0h-j9aZYmL9H87fk1mcyjggvdRgYkJxJyULGVhORFIRjrdhagSq1AmVzaMdUwjq02OTMUtOUErLXAeWwZH6L749-dd997CG22cXvfzQsZ40pzKQjnXYseW4V3IXgos52vtsYfMkqyXmDWC8x6gdlJYMfcHZkKAP77Ssq4U8f_ACH1a9c</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Lin, Li-Gang</creator><creator>Xin, Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5732-9964</orcidid><orcidid>https://orcid.org/0000-0002-9947-6986</orcidid></search><sort><creationdate>202005</creationdate><title>Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme</title><author>Lin, Li-Gang ; Xin, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ae6306ebe84d600bcc522653ce8f98e8ab6d719e74d9ab2a1e9d30eddde334d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applicability and computational analysis</topic><topic>Computer simulation</topic><topic>Control design</topic><topic>Energy consumption</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mobile robots</topic><topic>Nonlinear control</topic><topic>nonlinear control systems</topic><topic>Nonlinear dynamical systems</topic><topic>Pendulums</topic><topic>Physical properties</topic><topic>Riccati equation</topic><topic>Riccati equations</topic><topic>Robot control</topic><topic>Robots</topic><topic>state-dependent Riccati equation (SDRE)</topic><topic>wheeled inverted pendulum (WIP)</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Li-Gang</creatorcontrib><creatorcontrib>Xin, Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Li-Gang</au><au>Xin, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2020-05</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>1140</spage><epage>1148</epage><pages>1140-1148</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonunique state-dependent coefficients (SDCs) of the SDRE scheme is analyzed from a new perspective. This is formulated as a simple equivalence condition with reduced dimensionality, which circumvents the excessive online computational effort to check the solvability of classical SDRE. The condition is derived in a way to facilitate the generalization to all meaningful SDCs. Moreover, due to unsolvable AREs, all conflicts against the primary objective of posture balance of the robot are revealed and illustrated, with a connection to the robot physical parameters. At the system states that cause such conflicts and other unsolvable AREs, a simple analytical solution via alternative SDC constructions is suggested. More potential advantages of this SDC construction over the classical scheme are revealed in simulations, e.g., the maximum input/torque and total energy consumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2019.2899802</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5732-9964</orcidid><orcidid>https://orcid.org/0000-0002-9947-6986</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2020-05, Vol.28 (3), p.1140-1148 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2019_2899802 |
source | IEEE Electronic Library (IEL) |
subjects | Applicability and computational analysis Computer simulation Control design Energy consumption Exact solutions Mathematical analysis Mathematical model Mobile robots Nonlinear control nonlinear control systems Nonlinear dynamical systems Pendulums Physical properties Riccati equation Riccati equations Robot control Robots state-dependent Riccati equation (SDRE) wheeled inverted pendulum (WIP) Wheels |
title | Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Control%20of%20Two-Wheeled%20Robot%20Based%20on%20Novel%20Analysis%20and%20Design%20of%20SDRE%20Scheme&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Lin,%20Li-Gang&rft.date=2020-05&rft.volume=28&rft.issue=3&rft.spage=1140&rft.epage=1148&rft.pages=1140-1148&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2019.2899802&rft_dat=%3Cproquest_RIE%3E2389365033%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389365033&rft_id=info:pmid/&rft_ieee_id=8664452&rfr_iscdi=true |