Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme

This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2020-05, Vol.28 (3), p.1140-1148
Hauptverfasser: Lin, Li-Gang, Xin, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1148
container_issue 3
container_start_page 1140
container_title IEEE transactions on control systems technology
container_volume 28
creator Lin, Li-Gang
Xin, Ming
description This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonunique state-dependent coefficients (SDCs) of the SDRE scheme is analyzed from a new perspective. This is formulated as a simple equivalence condition with reduced dimensionality, which circumvents the excessive online computational effort to check the solvability of classical SDRE. The condition is derived in a way to facilitate the generalization to all meaningful SDCs. Moreover, due to unsolvable AREs, all conflicts against the primary objective of posture balance of the robot are revealed and illustrated, with a connection to the robot physical parameters. At the system states that cause such conflicts and other unsolvable AREs, a simple analytical solution via alternative SDC constructions is suggested. More potential advantages of this SDC construction over the classical scheme are revealed in simulations, e.g., the maximum input/torque and total energy consumption.
doi_str_mv 10.1109/TCST.2019.2899802
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2019_2899802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664452</ieee_id><sourcerecordid>2389365033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ae6306ebe84d600bcc522653ce8f98e8ab6d719e74d9ab2a1e9d30eddde334d23</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZjyZLLmc3P2BM2Cp6V9Lm1HV0zUw6Zf_elg2vznvxPoeXB6FbSkaUEv2QJqt0xAjVI6a0VoSdoQEVQkVESXHeZSJ5JAWXl-gqhA0hNBZsPECfC9fUVQPG48Q1rXc1diVOf130sQaoweKly12LH03osmvwwv1AjSeNqQ-hCtg0Fk8hVF9Nz62myxleFWvYwjW6KE0d4OZ0h-j9aZYmL9H87fk1mcyjggvdRgYkJxJyULGVhORFIRjrdhagSq1AmVzaMdUwjq02OTMUtOUErLXAeWwZH6L749-dd997CG22cXvfzQsZ40pzKQjnXYseW4V3IXgos52vtsYfMkqyXmDWC8x6gdlJYMfcHZkKAP77Ssq4U8f_ACH1a9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389365033</pqid></control><display><type>article</type><title>Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Li-Gang ; Xin, Ming</creator><creatorcontrib>Lin, Li-Gang ; Xin, Ming</creatorcontrib><description>This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonunique state-dependent coefficients (SDCs) of the SDRE scheme is analyzed from a new perspective. This is formulated as a simple equivalence condition with reduced dimensionality, which circumvents the excessive online computational effort to check the solvability of classical SDRE. The condition is derived in a way to facilitate the generalization to all meaningful SDCs. Moreover, due to unsolvable AREs, all conflicts against the primary objective of posture balance of the robot are revealed and illustrated, with a connection to the robot physical parameters. At the system states that cause such conflicts and other unsolvable AREs, a simple analytical solution via alternative SDC constructions is suggested. More potential advantages of this SDC construction over the classical scheme are revealed in simulations, e.g., the maximum input/torque and total energy consumption.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2019.2899802</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Applicability and computational analysis ; Computer simulation ; Control design ; Energy consumption ; Exact solutions ; Mathematical analysis ; Mathematical model ; Mobile robots ; Nonlinear control ; nonlinear control systems ; Nonlinear dynamical systems ; Pendulums ; Physical properties ; Riccati equation ; Riccati equations ; Robot control ; Robots ; state-dependent Riccati equation (SDRE) ; wheeled inverted pendulum (WIP) ; Wheels</subject><ispartof>IEEE transactions on control systems technology, 2020-05, Vol.28 (3), p.1140-1148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ae6306ebe84d600bcc522653ce8f98e8ab6d719e74d9ab2a1e9d30eddde334d23</citedby><cites>FETCH-LOGICAL-c359t-ae6306ebe84d600bcc522653ce8f98e8ab6d719e74d9ab2a1e9d30eddde334d23</cites><orcidid>0000-0001-5732-9964 ; 0000-0002-9947-6986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8664452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Li-Gang</creatorcontrib><creatorcontrib>Xin, Ming</creatorcontrib><title>Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonunique state-dependent coefficients (SDCs) of the SDRE scheme is analyzed from a new perspective. This is formulated as a simple equivalence condition with reduced dimensionality, which circumvents the excessive online computational effort to check the solvability of classical SDRE. The condition is derived in a way to facilitate the generalization to all meaningful SDCs. Moreover, due to unsolvable AREs, all conflicts against the primary objective of posture balance of the robot are revealed and illustrated, with a connection to the robot physical parameters. At the system states that cause such conflicts and other unsolvable AREs, a simple analytical solution via alternative SDC constructions is suggested. More potential advantages of this SDC construction over the classical scheme are revealed in simulations, e.g., the maximum input/torque and total energy consumption.</description><subject>Applicability and computational analysis</subject><subject>Computer simulation</subject><subject>Control design</subject><subject>Energy consumption</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mobile robots</subject><subject>Nonlinear control</subject><subject>nonlinear control systems</subject><subject>Nonlinear dynamical systems</subject><subject>Pendulums</subject><subject>Physical properties</subject><subject>Riccati equation</subject><subject>Riccati equations</subject><subject>Robot control</subject><subject>Robots</subject><subject>state-dependent Riccati equation (SDRE)</subject><subject>wheeled inverted pendulum (WIP)</subject><subject>Wheels</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZjyZLLmc3P2BM2Cp6V9Lm1HV0zUw6Zf_elg2vznvxPoeXB6FbSkaUEv2QJqt0xAjVI6a0VoSdoQEVQkVESXHeZSJ5JAWXl-gqhA0hNBZsPECfC9fUVQPG48Q1rXc1diVOf130sQaoweKly12LH03osmvwwv1AjSeNqQ-hCtg0Fk8hVF9Nz62myxleFWvYwjW6KE0d4OZ0h-j9aZYmL9H87fk1mcyjggvdRgYkJxJyULGVhORFIRjrdhagSq1AmVzaMdUwjq02OTMUtOUErLXAeWwZH6L749-dd997CG22cXvfzQsZ40pzKQjnXYseW4V3IXgos52vtsYfMkqyXmDWC8x6gdlJYMfcHZkKAP77Ssq4U8f_ACH1a9c</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Lin, Li-Gang</creator><creator>Xin, Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5732-9964</orcidid><orcidid>https://orcid.org/0000-0002-9947-6986</orcidid></search><sort><creationdate>202005</creationdate><title>Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme</title><author>Lin, Li-Gang ; Xin, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ae6306ebe84d600bcc522653ce8f98e8ab6d719e74d9ab2a1e9d30eddde334d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applicability and computational analysis</topic><topic>Computer simulation</topic><topic>Control design</topic><topic>Energy consumption</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mobile robots</topic><topic>Nonlinear control</topic><topic>nonlinear control systems</topic><topic>Nonlinear dynamical systems</topic><topic>Pendulums</topic><topic>Physical properties</topic><topic>Riccati equation</topic><topic>Riccati equations</topic><topic>Robot control</topic><topic>Robots</topic><topic>state-dependent Riccati equation (SDRE)</topic><topic>wheeled inverted pendulum (WIP)</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Li-Gang</creatorcontrib><creatorcontrib>Xin, Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Li-Gang</au><au>Xin, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2020-05</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>1140</spage><epage>1148</epage><pages>1140-1148</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This brief presents a nonlinear control design for a two-wheeled inverted pendulum robot, based on new analysis of the classical state-dependent Riccati equation (SDRE) scheme and a novel alternative strategy. The solvability of pointwise algebraic Riccati equations (AREs) corresponding to the nonunique state-dependent coefficients (SDCs) of the SDRE scheme is analyzed from a new perspective. This is formulated as a simple equivalence condition with reduced dimensionality, which circumvents the excessive online computational effort to check the solvability of classical SDRE. The condition is derived in a way to facilitate the generalization to all meaningful SDCs. Moreover, due to unsolvable AREs, all conflicts against the primary objective of posture balance of the robot are revealed and illustrated, with a connection to the robot physical parameters. At the system states that cause such conflicts and other unsolvable AREs, a simple analytical solution via alternative SDC constructions is suggested. More potential advantages of this SDC construction over the classical scheme are revealed in simulations, e.g., the maximum input/torque and total energy consumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2019.2899802</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5732-9964</orcidid><orcidid>https://orcid.org/0000-0002-9947-6986</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2020-05, Vol.28 (3), p.1140-1148
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2019_2899802
source IEEE Electronic Library (IEL)
subjects Applicability and computational analysis
Computer simulation
Control design
Energy consumption
Exact solutions
Mathematical analysis
Mathematical model
Mobile robots
Nonlinear control
nonlinear control systems
Nonlinear dynamical systems
Pendulums
Physical properties
Riccati equation
Riccati equations
Robot control
Robots
state-dependent Riccati equation (SDRE)
wheeled inverted pendulum (WIP)
Wheels
title Nonlinear Control of Two-Wheeled Robot Based on Novel Analysis and Design of SDRE Scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Control%20of%20Two-Wheeled%20Robot%20Based%20on%20Novel%20Analysis%20and%20Design%20of%20SDRE%20Scheme&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Lin,%20Li-Gang&rft.date=2020-05&rft.volume=28&rft.issue=3&rft.spage=1140&rft.epage=1148&rft.pages=1140-1148&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2019.2899802&rft_dat=%3Cproquest_RIE%3E2389365033%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389365033&rft_id=info:pmid/&rft_ieee_id=8664452&rfr_iscdi=true