Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics

Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2017-09, Vol.25 (5), p.1711-1723
Hauptverfasser: Chen, Yanjie, Xu, Wenjun, Li, Zheng, Song, Shuang, Lim, Chwee Ming, Wang, Yaonan, Ren, Hongliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1723
container_issue 5
container_start_page 1711
container_title IEEE transactions on control systems technology
container_volume 25
creator Chen, Yanjie
Xu, Wenjun
Li, Zheng
Song, Shuang
Lim, Chwee Ming
Wang, Yaonan
Ren, Hongliang
description Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advantages on operating with complicated nonlinear anatomical constraints, and it can reach deep occluded surgical targets without colliding in a critical anatomical environment. In surgical robotic operation, less spatial sweeping area from the flexible manipulator in motions is desired to induce the minimal surgical complications. The goal of our research is to reduce unnecessary sweeping motion of the flexible surgical manipulator in operations, and to obtain safer and more reliable reference trajectories. A novel 3-D neural dynamic model is proposed and expected to obtain the safety-enhanced trajectory in workspace with the consideration of minimum sweeping area. In this model, the neural stimulation propagates from the start state to the whole network through the connective weight of manipulator's sweeping area. According to the results of comparative studies with commonly used planning algorithms in various simulation scenarios, the proposed planning algorithm is validated in terms of effectiveness and safety. Ultimately, the experiments on phantoms and preclinical cadaveric human head show the feasibility of the proposed safety-enhanced planning algorithm.
doi_str_mv 10.1109/TCST.2016.2628806
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2016_2628806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7769206</ieee_id><sourcerecordid>10_1109_TCST_2016_2628806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-c37562065aaf51cf1bf96e7f346eb225c19457eaf80ffd852246703ad44a6ed93</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHzpF-jMn-amfZS5qbCpsA0fy12azEiXjqQF9-1t2fDpXDjnXA4_Qu4ZnTBGi8f1dLWecMpgwoHnOYULMmJS5inNQV72NwWRghRwTW5i_KGUZZKrEflaoTXtMZ35b_TaVMmyaV3jk88avXd-l9gmJPPa_LptbZJVF3ZOY50s0btDV2Pbu5s45N5NF3rj-ehx73S8JVcW62juzjomm_lsPX1NFx8vb9OnRao5yDbVQkngFCSilUxbtrUFGGVFBmbLudSsyKQyaHNqbZVLzjNQVGCVZQimKsSYsNNfHZoYg7HlIbg9hmPJaDmQKQcy5UCmPJPpOw-njjPG_OeVgqJfIv4AOnxgcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics</title><source>IEEE/IET Electronic Library</source><creator>Chen, Yanjie ; Xu, Wenjun ; Li, Zheng ; Song, Shuang ; Lim, Chwee Ming ; Wang, Yaonan ; Ren, Hongliang</creator><creatorcontrib>Chen, Yanjie ; Xu, Wenjun ; Li, Zheng ; Song, Shuang ; Lim, Chwee Ming ; Wang, Yaonan ; Ren, Hongliang</creatorcontrib><description>Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advantages on operating with complicated nonlinear anatomical constraints, and it can reach deep occluded surgical targets without colliding in a critical anatomical environment. In surgical robotic operation, less spatial sweeping area from the flexible manipulator in motions is desired to induce the minimal surgical complications. The goal of our research is to reduce unnecessary sweeping motion of the flexible surgical manipulator in operations, and to obtain safer and more reliable reference trajectories. A novel 3-D neural dynamic model is proposed and expected to obtain the safety-enhanced trajectory in workspace with the consideration of minimum sweeping area. In this model, the neural stimulation propagates from the start state to the whole network through the connective weight of manipulator's sweeping area. According to the results of comparative studies with commonly used planning algorithms in various simulation scenarios, the proposed planning algorithm is validated in terms of effectiveness and safety. Ultimately, the experiments on phantoms and preclinical cadaveric human head show the feasibility of the proposed safety-enhanced planning algorithm.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2016.2628806</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electron tubes ; Heuristic algorithms ; Manipulator dynamics ; Medical robotics ; minimum sweeping area ; motion planning ; neural dynamics ; Planning ; tendon-driven serpentine manipulator ; Trajectory</subject><ispartof>IEEE transactions on control systems technology, 2017-09, Vol.25 (5), p.1711-1723</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-c37562065aaf51cf1bf96e7f346eb225c19457eaf80ffd852246703ad44a6ed93</citedby><cites>FETCH-LOGICAL-c265t-c37562065aaf51cf1bf96e7f346eb225c19457eaf80ffd852246703ad44a6ed93</cites><orcidid>0000-0001-9750-9177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7769206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7769206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yanjie</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Song, Shuang</creatorcontrib><creatorcontrib>Lim, Chwee Ming</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><creatorcontrib>Ren, Hongliang</creatorcontrib><title>Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advantages on operating with complicated nonlinear anatomical constraints, and it can reach deep occluded surgical targets without colliding in a critical anatomical environment. In surgical robotic operation, less spatial sweeping area from the flexible manipulator in motions is desired to induce the minimal surgical complications. The goal of our research is to reduce unnecessary sweeping motion of the flexible surgical manipulator in operations, and to obtain safer and more reliable reference trajectories. A novel 3-D neural dynamic model is proposed and expected to obtain the safety-enhanced trajectory in workspace with the consideration of minimum sweeping area. In this model, the neural stimulation propagates from the start state to the whole network through the connective weight of manipulator's sweeping area. According to the results of comparative studies with commonly used planning algorithms in various simulation scenarios, the proposed planning algorithm is validated in terms of effectiveness and safety. Ultimately, the experiments on phantoms and preclinical cadaveric human head show the feasibility of the proposed safety-enhanced planning algorithm.</description><subject>Electron tubes</subject><subject>Heuristic algorithms</subject><subject>Manipulator dynamics</subject><subject>Medical robotics</subject><subject>minimum sweeping area</subject><subject>motion planning</subject><subject>neural dynamics</subject><subject>Planning</subject><subject>tendon-driven serpentine manipulator</subject><subject>Trajectory</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHzpF-jMn-amfZS5qbCpsA0fy12azEiXjqQF9-1t2fDpXDjnXA4_Qu4ZnTBGi8f1dLWecMpgwoHnOYULMmJS5inNQV72NwWRghRwTW5i_KGUZZKrEflaoTXtMZ35b_TaVMmyaV3jk88avXd-l9gmJPPa_LptbZJVF3ZOY50s0btDV2Pbu5s45N5NF3rj-ehx73S8JVcW62juzjomm_lsPX1NFx8vb9OnRao5yDbVQkngFCSilUxbtrUFGGVFBmbLudSsyKQyaHNqbZVLzjNQVGCVZQimKsSYsNNfHZoYg7HlIbg9hmPJaDmQKQcy5UCmPJPpOw-njjPG_OeVgqJfIv4AOnxgcg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Chen, Yanjie</creator><creator>Xu, Wenjun</creator><creator>Li, Zheng</creator><creator>Song, Shuang</creator><creator>Lim, Chwee Ming</creator><creator>Wang, Yaonan</creator><creator>Ren, Hongliang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9750-9177</orcidid></search><sort><creationdate>201709</creationdate><title>Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics</title><author>Chen, Yanjie ; Xu, Wenjun ; Li, Zheng ; Song, Shuang ; Lim, Chwee Ming ; Wang, Yaonan ; Ren, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-c37562065aaf51cf1bf96e7f346eb225c19457eaf80ffd852246703ad44a6ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electron tubes</topic><topic>Heuristic algorithms</topic><topic>Manipulator dynamics</topic><topic>Medical robotics</topic><topic>minimum sweeping area</topic><topic>motion planning</topic><topic>neural dynamics</topic><topic>Planning</topic><topic>tendon-driven serpentine manipulator</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yanjie</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Song, Shuang</creatorcontrib><creatorcontrib>Lim, Chwee Ming</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><creatorcontrib>Ren, Hongliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yanjie</au><au>Xu, Wenjun</au><au>Li, Zheng</au><au>Song, Shuang</au><au>Lim, Chwee Ming</au><au>Wang, Yaonan</au><au>Ren, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2017-09</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1711</spage><epage>1723</epage><pages>1711-1723</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advantages on operating with complicated nonlinear anatomical constraints, and it can reach deep occluded surgical targets without colliding in a critical anatomical environment. In surgical robotic operation, less spatial sweeping area from the flexible manipulator in motions is desired to induce the minimal surgical complications. The goal of our research is to reduce unnecessary sweeping motion of the flexible surgical manipulator in operations, and to obtain safer and more reliable reference trajectories. A novel 3-D neural dynamic model is proposed and expected to obtain the safety-enhanced trajectory in workspace with the consideration of minimum sweeping area. In this model, the neural stimulation propagates from the start state to the whole network through the connective weight of manipulator's sweeping area. According to the results of comparative studies with commonly used planning algorithms in various simulation scenarios, the proposed planning algorithm is validated in terms of effectiveness and safety. Ultimately, the experiments on phantoms and preclinical cadaveric human head show the feasibility of the proposed safety-enhanced planning algorithm.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2016.2628806</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9750-9177</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2017-09, Vol.25 (5), p.1711-1723
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2016_2628806
source IEEE/IET Electronic Library
subjects Electron tubes
Heuristic algorithms
Manipulator dynamics
Medical robotics
minimum sweeping area
motion planning
neural dynamics
Planning
tendon-driven serpentine manipulator
Trajectory
title Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safety-Enhanced%20Motion%20Planning%20for%20Flexible%20Surgical%20Manipulator%20Using%20Neural%20Dynamics&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Chen,%20Yanjie&rft.date=2017-09&rft.volume=25&rft.issue=5&rft.spage=1711&rft.epage=1723&rft.pages=1711-1723&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2016.2628806&rft_dat=%3Ccrossref_RIE%3E10_1109_TCST_2016_2628806%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7769206&rfr_iscdi=true