Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics
Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advant...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2017-09, Vol.25 (5), p.1711-1723 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1723 |
---|---|
container_issue | 5 |
container_start_page | 1711 |
container_title | IEEE transactions on control systems technology |
container_volume | 25 |
creator | Chen, Yanjie Xu, Wenjun Li, Zheng Song, Shuang Lim, Chwee Ming Wang, Yaonan Ren, Hongliang |
description | Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advantages on operating with complicated nonlinear anatomical constraints, and it can reach deep occluded surgical targets without colliding in a critical anatomical environment. In surgical robotic operation, less spatial sweeping area from the flexible manipulator in motions is desired to induce the minimal surgical complications. The goal of our research is to reduce unnecessary sweeping motion of the flexible surgical manipulator in operations, and to obtain safer and more reliable reference trajectories. A novel 3-D neural dynamic model is proposed and expected to obtain the safety-enhanced trajectory in workspace with the consideration of minimum sweeping area. In this model, the neural stimulation propagates from the start state to the whole network through the connective weight of manipulator's sweeping area. According to the results of comparative studies with commonly used planning algorithms in various simulation scenarios, the proposed planning algorithm is validated in terms of effectiveness and safety. Ultimately, the experiments on phantoms and preclinical cadaveric human head show the feasibility of the proposed safety-enhanced planning algorithm. |
doi_str_mv | 10.1109/TCST.2016.2628806 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2016_2628806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7769206</ieee_id><sourcerecordid>10_1109_TCST_2016_2628806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-c37562065aaf51cf1bf96e7f346eb225c19457eaf80ffd852246703ad44a6ed93</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHzpF-jMn-amfZS5qbCpsA0fy12azEiXjqQF9-1t2fDpXDjnXA4_Qu4ZnTBGi8f1dLWecMpgwoHnOYULMmJS5inNQV72NwWRghRwTW5i_KGUZZKrEflaoTXtMZ35b_TaVMmyaV3jk88avXd-l9gmJPPa_LptbZJVF3ZOY50s0btDV2Pbu5s45N5NF3rj-ehx73S8JVcW62juzjomm_lsPX1NFx8vb9OnRao5yDbVQkngFCSilUxbtrUFGGVFBmbLudSsyKQyaHNqbZVLzjNQVGCVZQimKsSYsNNfHZoYg7HlIbg9hmPJaDmQKQcy5UCmPJPpOw-njjPG_OeVgqJfIv4AOnxgcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics</title><source>IEEE/IET Electronic Library</source><creator>Chen, Yanjie ; Xu, Wenjun ; Li, Zheng ; Song, Shuang ; Lim, Chwee Ming ; Wang, Yaonan ; Ren, Hongliang</creator><creatorcontrib>Chen, Yanjie ; Xu, Wenjun ; Li, Zheng ; Song, Shuang ; Lim, Chwee Ming ; Wang, Yaonan ; Ren, Hongliang</creatorcontrib><description>Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advantages on operating with complicated nonlinear anatomical constraints, and it can reach deep occluded surgical targets without colliding in a critical anatomical environment. In surgical robotic operation, less spatial sweeping area from the flexible manipulator in motions is desired to induce the minimal surgical complications. The goal of our research is to reduce unnecessary sweeping motion of the flexible surgical manipulator in operations, and to obtain safer and more reliable reference trajectories. A novel 3-D neural dynamic model is proposed and expected to obtain the safety-enhanced trajectory in workspace with the consideration of minimum sweeping area. In this model, the neural stimulation propagates from the start state to the whole network through the connective weight of manipulator's sweeping area. According to the results of comparative studies with commonly used planning algorithms in various simulation scenarios, the proposed planning algorithm is validated in terms of effectiveness and safety. Ultimately, the experiments on phantoms and preclinical cadaveric human head show the feasibility of the proposed safety-enhanced planning algorithm.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2016.2628806</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electron tubes ; Heuristic algorithms ; Manipulator dynamics ; Medical robotics ; minimum sweeping area ; motion planning ; neural dynamics ; Planning ; tendon-driven serpentine manipulator ; Trajectory</subject><ispartof>IEEE transactions on control systems technology, 2017-09, Vol.25 (5), p.1711-1723</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-c37562065aaf51cf1bf96e7f346eb225c19457eaf80ffd852246703ad44a6ed93</citedby><cites>FETCH-LOGICAL-c265t-c37562065aaf51cf1bf96e7f346eb225c19457eaf80ffd852246703ad44a6ed93</cites><orcidid>0000-0001-9750-9177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7769206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7769206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yanjie</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Song, Shuang</creatorcontrib><creatorcontrib>Lim, Chwee Ming</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><creatorcontrib>Ren, Hongliang</creatorcontrib><title>Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advantages on operating with complicated nonlinear anatomical constraints, and it can reach deep occluded surgical targets without colliding in a critical anatomical environment. In surgical robotic operation, less spatial sweeping area from the flexible manipulator in motions is desired to induce the minimal surgical complications. The goal of our research is to reduce unnecessary sweeping motion of the flexible surgical manipulator in operations, and to obtain safer and more reliable reference trajectories. A novel 3-D neural dynamic model is proposed and expected to obtain the safety-enhanced trajectory in workspace with the consideration of minimum sweeping area. In this model, the neural stimulation propagates from the start state to the whole network through the connective weight of manipulator's sweeping area. According to the results of comparative studies with commonly used planning algorithms in various simulation scenarios, the proposed planning algorithm is validated in terms of effectiveness and safety. Ultimately, the experiments on phantoms and preclinical cadaveric human head show the feasibility of the proposed safety-enhanced planning algorithm.</description><subject>Electron tubes</subject><subject>Heuristic algorithms</subject><subject>Manipulator dynamics</subject><subject>Medical robotics</subject><subject>minimum sweeping area</subject><subject>motion planning</subject><subject>neural dynamics</subject><subject>Planning</subject><subject>tendon-driven serpentine manipulator</subject><subject>Trajectory</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHzpF-jMn-amfZS5qbCpsA0fy12azEiXjqQF9-1t2fDpXDjnXA4_Qu4ZnTBGi8f1dLWecMpgwoHnOYULMmJS5inNQV72NwWRghRwTW5i_KGUZZKrEflaoTXtMZ35b_TaVMmyaV3jk88avXd-l9gmJPPa_LptbZJVF3ZOY50s0btDV2Pbu5s45N5NF3rj-ehx73S8JVcW62juzjomm_lsPX1NFx8vb9OnRao5yDbVQkngFCSilUxbtrUFGGVFBmbLudSsyKQyaHNqbZVLzjNQVGCVZQimKsSYsNNfHZoYg7HlIbg9hmPJaDmQKQcy5UCmPJPpOw-njjPG_OeVgqJfIv4AOnxgcg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Chen, Yanjie</creator><creator>Xu, Wenjun</creator><creator>Li, Zheng</creator><creator>Song, Shuang</creator><creator>Lim, Chwee Ming</creator><creator>Wang, Yaonan</creator><creator>Ren, Hongliang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9750-9177</orcidid></search><sort><creationdate>201709</creationdate><title>Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics</title><author>Chen, Yanjie ; Xu, Wenjun ; Li, Zheng ; Song, Shuang ; Lim, Chwee Ming ; Wang, Yaonan ; Ren, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-c37562065aaf51cf1bf96e7f346eb225c19457eaf80ffd852246703ad44a6ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electron tubes</topic><topic>Heuristic algorithms</topic><topic>Manipulator dynamics</topic><topic>Medical robotics</topic><topic>minimum sweeping area</topic><topic>motion planning</topic><topic>neural dynamics</topic><topic>Planning</topic><topic>tendon-driven serpentine manipulator</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yanjie</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Song, Shuang</creatorcontrib><creatorcontrib>Lim, Chwee Ming</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><creatorcontrib>Ren, Hongliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yanjie</au><au>Xu, Wenjun</au><au>Li, Zheng</au><au>Song, Shuang</au><au>Lim, Chwee Ming</au><au>Wang, Yaonan</au><au>Ren, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2017-09</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1711</spage><epage>1723</epage><pages>1711-1723</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Robot-assisted systems have been developed for minimally invasive surgical procedures, which bring tremendous benefits for patients, such as less trauma, less bleeding, and shorter recovery time. Among the contemporary surgical robotic manipulators, flexible serpentine manipulator shows great advantages on operating with complicated nonlinear anatomical constraints, and it can reach deep occluded surgical targets without colliding in a critical anatomical environment. In surgical robotic operation, less spatial sweeping area from the flexible manipulator in motions is desired to induce the minimal surgical complications. The goal of our research is to reduce unnecessary sweeping motion of the flexible surgical manipulator in operations, and to obtain safer and more reliable reference trajectories. A novel 3-D neural dynamic model is proposed and expected to obtain the safety-enhanced trajectory in workspace with the consideration of minimum sweeping area. In this model, the neural stimulation propagates from the start state to the whole network through the connective weight of manipulator's sweeping area. According to the results of comparative studies with commonly used planning algorithms in various simulation scenarios, the proposed planning algorithm is validated in terms of effectiveness and safety. Ultimately, the experiments on phantoms and preclinical cadaveric human head show the feasibility of the proposed safety-enhanced planning algorithm.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2016.2628806</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9750-9177</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2017-09, Vol.25 (5), p.1711-1723 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2016_2628806 |
source | IEEE/IET Electronic Library |
subjects | Electron tubes Heuristic algorithms Manipulator dynamics Medical robotics minimum sweeping area motion planning neural dynamics Planning tendon-driven serpentine manipulator Trajectory |
title | Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safety-Enhanced%20Motion%20Planning%20for%20Flexible%20Surgical%20Manipulator%20Using%20Neural%20Dynamics&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Chen,%20Yanjie&rft.date=2017-09&rft.volume=25&rft.issue=5&rft.spage=1711&rft.epage=1723&rft.pages=1711-1723&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2016.2628806&rft_dat=%3Ccrossref_RIE%3E10_1109_TCST_2016_2628806%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7769206&rfr_iscdi=true |